Answer:
2K + 2H2O → H2 + 2KOH
Explanation:
Find how many atoms you have on both sides then add 2 to both sides.
Reactant: Products:
K: 1+1=2 K: 1+1=2
H: 2+2=4 H: 3+1=4
O: 1+1=2 O: 1+1=2
Therefore it is balanced. Hope this helps
<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
<span> N-16
</span>7 protons & 9 neutrons
<span>7 + 9 = 16
</span>
Gravitational<span> Acceleration or W=Mg so... Q1: W(earth)=</span>50, W(X)=500 ---> g(X)=10<span>*g(earth)=10*9.8=98 --> C is correct. Q2: </span>M<span>=W/g --> </span>M=735/9.8=75 ---> B is correct. Q3: W=Mg=50*3.59<span>=179.5 N ---> B is correct</span>
Answer:
Actually, The Henderson - Hasselbalch equation allows you to calculate the pH of the buffer by using the pKa of the weak acid and the ratio that exists between the concentrations of the weak cid and conjugate base. The pKa of formic acid is equal to 3.75. In this case, the pH of the solution will be equal to the acid's pKa .