There are two hydrogen and two oxygen molecules because the number next to the atomic number is how many there are.
It is achievable for the same enzyme to catalyze reverse reactions for the reason that the direction of a reversible reaction is determined by the concentrations of reactants and products. In pulmonary circulation, the low CO2 concentration supports the making of CO2 and H2O.
Answer:
The cat
Explanation:
1) You need to find how many meters per second each thing is sprinting, so you can divide the meters by seconds for each.

2) Per second, the sprinter is able to achieve 8 meters, while the cat can do around 10.5 meters. 10.5 is greater than 8, making the cat faster than the sprinter.
Answer:
The answer is 3-Phenylpropanoic acid (see attached structure)
Explanation:
From spectral data:
3005 cm-1 ⇒ carboxylic acid (broad band)
1670 cm-1 ⇒ C=C
1603 cm-1 ⇒ Aromatic C-C bond
H NMR frequency at 2.6 ppm, singlet, ⇒ OH with no surrounding protons, possible deshielding (clearer investigation of spectrum would be expedient).
Hence, our C9H10O2 compound has an aromatic ring and carboxylic acid group attached to it.
Answer:
C. CH3COOH, Ka = 1.8 E-5
Explanation:
analyzing the pKa of the given acids:
∴ pKa = - Log Ka
A. pKa = - Log (1.0 E-3 ) = 3
B. pKa = - Log (2.9 E-4) = 3.54
C. pKa = - Log (1.8 E-5) = 4.745
D. pKa = - Log (4.0 E-6) = 5.397
E. pKa = - Log (2.3 E-9) = 8.638
We choose the (C) acid since its pKa close to the expected pH.
⇒ For a buffer solution formed from an acid and its respective salt, we have the equation Henderson-Hausselbach (H-H):
- pH = pKa + Log ([CH3COO-]/[CH3COOH])
∴ pH = 4.5
∴ pKa = 4.745
⇒ 4.5 = 4.745 + Log ([CH3COO-]/[CH3COOH])
⇒ - 0.245 = Log ([CH3COO-]/[CH3COOH])
⇒ 0.5692 = [CH3COO-]/[CH3COOH]
∴ Ka = 1.8 E-5 = ([H3O+].[CH3COO-])/[CH3COOH]
⇒ 1.8 E-5 = [H3O+](0.5692)
⇒ [H3O+] = 3.1623 E-5 M
⇒ pH = - Log ( 3.1623 E-5 ) = 4.5