1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
3 years ago
10

The amount of potential energy depends on the objects _________ and position

Physics
2 answers:
kirill115 [55]3 years ago
5 0

Mass Urdu fight him in

disa [49]3 years ago
4 0
Mass would be the answer
You might be interested in
Ok I have no clue for this one I’m not sure what to make out of this one please help
MatroZZZ [7]

Helium, Neon, and Xenon are all part of the same column on the Periodic Table. Such a column is referred to as a Group, because they have the same number of valence electrons in their outermost shell. Hope this helps!

5 0
4 years ago
15 points! An atomic nucleus initially moving at 420 m/s emits an alpha particle in the direction of its velocity, and the remai
alexandr1967 [171]

The alpha particle is emitted at 4235 m/s

Explanation:

We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:

p_i = p_f\\ Mu=m_1 v_1 + m_2 v_2 =  

where:  

M =222u is the mass of the original nucleus

v=420 m/s is the initial velocity of the nucleus

m_1 = 4 u is the mass of the alpha particle

v_1 is the final velocity of the alpha particle

m_2 = 222u-4u = 218 u is the mass of the daughter nucleus

v_2 = 350 m/s is the final velocity of the nucleus

Solving for v_1, we  find the final velocity of the alpha particle:

v_1 = \frac{Mu-m_2 v_2}{m_1}=\frac{(222)(420)-(218)(350)}{4}=4235 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

4 0
3 years ago
A single insulated duct flow experiment using air operating at steady-state is performed in a lab. One measurement location (Sta
weqwewe [10]

Answer:

a) -0.0934 kJ/kg. K

b) The direction of flow is from right to left.

Explanation:

A free flow diagram of the horizontal insulated duct is as shown below.

NOW,

Let assume that the direction of flow is from left to right and consider the following relation for the entropy rate balance equation for a control volume as:

\frac{\sigma_{cv}}{m}= (s_2-s_1) \geq  0 \ \ \ -------> \ \ \ 1

Now; if the value for this relation is greater than zero; then we conclude that our assumption is correct.

If the value is less than zero; then we conclude that the assumption is wrong.

Then, the flow is said to be  in the opposite direction

Formula for the change in specific entropy can be calculated as:

s_2-s_1 = s^0(T_2) - s^0(T_1)-R \ In ( \frac{P_2}{P-1}) \ \ \  ------->  \ \ \ 2

where;

s_1, s_2 , s^0(T_2), s^0(T1) are specific entropies

R = universal gas constant

P_1 = pressure at location 1

P_2 = pressure at location 2

We obtain the specific properties of air at temperature at T_1 = (67°C + 273)K = 340 K from the table A-22 ( Ideal gas properties of air)

s^0(T1) = 1.8279 kJ/kg.K

We also obtain the specific properties of air at temperature T_2 = 22°C + 273) K = 295 K

From the table A- 22

s^0(T_2) = 1.68515 kJ/kg . K

R = \frac{8.314 kJ}{28.97 kg.K}

P_1 = 0.95 bar

P_2 = 0.8 bar

Now replacing our values  into equation (2) from above; we have;

s_2-s_1 = s^0(T_2) -s^0(T_1)-R \ In (\frac{P_2}{P_1} )

s_2-s_1 = 1.68515 -1.8279-\frac{8.314}{28.97}  \ In (\frac{0.8}{0.95} )

s_2-s_1 = 1.68515 -1.8279+ 0.0493

s_2-s_1 =-0.0934 \  kJ/kg.K

Equating our result to equation (1)

s_2-s_1 \geq 0\\-0.0934 \leq 0

Therefore , our assumption is wrong and the direction of flow is said to be from right to left.

We therefore conclude that the direction of flow is from right to left.

3 0
4 years ago
There is no sound in the vacuum of space. Why? Sound must travel through something that vibrates. There is no energy in space. T
Blababa [14]

Sound must travel through a medium/body. Space is a vacuum so there is no medium/body for sound to travel through, so there is no sound.

3 0
4 years ago
In the heat equation, what does c represent
Bingel [31]
Heat equation, Q = m.c.Δt
Here, c represents " the specific heat of the substance "

Hope this helps!
5 0
3 years ago
Read 2 more answers
Other questions:
  • the line on the position time graph show the velocites of different vehicles which line represents a vehicle moving at constant
    12·1 answer
  • Which are causes of mechanical weathering? (check all that apply)
    7·2 answers
  • An organized plan for a gathering, organization, and communication information is called a(n) _____
    14·1 answer
  • The mass density of an object is 16.3 g/cc, and its volume is determined to be 16.7 cc. what is the mass of the object?
    14·1 answer
  • What is the mass of a crate if a force of 200 N causes it to accelerate at 8 m/s2? (Formula: F=ma)
    10·2 answers
  • Who was the first person to walk on the moon ?
    6·2 answers
  • A car is cruising at a steady speed of 35 mph. Suddenly, a cuddly puppy runs out into the road. The driver takes 1.7 seconds to
    14·1 answer
  • Momentum has a _____.<br> a. direction only<br> b. magnitude only<br> c. direction and magnitude
    14·2 answers
  • How does the law of the conservation of mass relate to "You can't get something for nothing
    15·1 answer
  • 1. My grass is dying, and I believe it's because it is not getting enough water. Sol
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!