Answer:
True
Explanation:
In this particular case, the area of the graph represents the impulse.
In fact, impulse is defined as the change in momentum of an object:
Moreover, impulse is also defined as the product between the magnitude of the force acting on an object and the duration of the collision:
If we plot a graph of the force versus the time, if the force is constant then this graph will have a rectangular shape, and the area under the graph will simply be the product
which corresponds to the definition of impulse.
Explanation:
A metal such as copper is a <u>conductor</u> because it provides a pathway for electric charges to move easily. A material such as rubber is an <u>insulator</u> because it <u>resists</u> the flow of electric charges. A material that partially conducts electric current is a <u>semiconductor</u>. These materials include <u>group 3 and group 5</u> elements.
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling the initial momentum of object X and the initial momentum of object Y, we can derive the total initial momentum of the system:
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system:
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):
Answer:
x=?
dt=?
vi=23m/s
vf=0m/s (it stops)
d=0.25m/s^2
time =
vf=vi+d: 0=23m/s+(0.25m/s^2)t
t=92s
displacement=
vf^2=vi^2+2a(dx)
23^2=0^2+2(0.25m/s^2)x =-1058m
Explanation:
you can find time from vf = vi + a(Dt): 0 = 23 m/s + (0.25 m/s/s)t so t = 92 s and you can find the displacement from vf2 = vi2 + 2a(Dx) and find the answer in one step: 232 = 02 + 2(0.25 m/s/s)x so x = -1058 m
Answer:
Explanation:
Using the equation of motion v² = u²+2as
v is the final velocity = 40m/s
u is the iniyail velocity 0m/s
a is the acceleration
s is the displacement
Substituting in the formula;
40² = 0²+2a(50)
1600 = 100a
Divide both sides by 100
100a/100 = 1600/100
a = 16
Hence the car acceleration is 16m/s²