Answer:
c. 2 m/s
Explanation:
The relationship between speed, frequency and wavelength of a wave is given by:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the transverse wave in this problem, we have:
is the frequency
is the wavelength
Substituting these numbers into the equation, we find the speed of the wave:

Answer:
A
Explanation:
Iron and gadlinium are both very easily made into magnetic substances. Cobalt is also capable of being magnetized. Aluminum, put in an alloy, can make a magnetic substance, but
Aluminum by itself is not able to be magnetized.
Answer:
sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Explanation:
We have given first vector which has length of 7 units and makes an angle of 30° with positive x-axis
So x component of the vector 
y component of the vector 
So vector will be 6.06i+3.5j
Now other vector of length of 7 units and makes an angle of 120° with positive x-axis
So x component of vector 
y component of the vector 
Now sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Answer:
S=48.29 m
Explanation:
Given that the height of the hill h = 2.9 m
Coefficient of kinetic friction between his sled and the snow μ = 0.08
Let u be the speed of the skier at the bottom of the hill.
By applying conservation of energy at the top and bottom of the inclined plane we get.
Potential Energy=kinetic Energy
mgh = (1/2) mu²
u² = 2gh
u²=2(9.81)(2.9)
=56.89
u=7.54 m/s
a = - f / m
a = - μ*m*g / m
a = - μg
From equation of motion
v²- u² = 2 -μ g S
v=0 m/s
-(7.54)²=-2(0.06)(9.81)S
S=48.29 m
Answer:
- No, this doesn't mean the electric potential equals zero.
Explanation:
In electrostatics, the electric field
is related to the gradient of the electric potential V with :

This means that for constant electric potential the electric field must be zero:





This is not the only case in which we would find an zero electric field, as, any scalar field with gradient zero will give an zero electric field. For example:

give an electric field of zero at point (0,0,0)