Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer:
All soft drinks contain water. When soft drink bottles are chilled in sub-zero temperatures, the water on account of its anomalous expansion expands. Thus, to provide space for expanding water, soft drink bottles are not completely filled as otherwise they will burst.
Explanation:
The process by which two or more tiny nuclei unite to generate a bigger nucleus is known as a nuclear fusion reaction. Heavier atoms are products of a fusion reaction.
<h3 /><h3>What is nuclear fusion?</h3>
The process by which two or more tiny nuclei unite to generate a bigger nucleus is known as a nuclear fusion reaction.
For example, the fusion of two hydrogen atoms produces more energy than the fusion of one helium atom, and surplus energy is expelled into space upon binding.
Hence heavier atoms are e products of a fusion reaction.
To learn more about nuclear fusion refer to the link;
brainly.com/question/14019172
The time the package travels horizontally is equal to the time it takes to hit the ground. This can be calculated using:
s = ut + 1/2 at²; u is 0
480 = 4.9t²
t = 9.90 seconds
Horizontal distance = horizontal speed x time
The speed will be converted to m/s from km/h
= 180 km/hr x 1000m/km x 1hr/3600 seconds x 9.90 seconds
= 495 m
Answer: I = 3.6 m3
(C)
Explanation:
moment of inertia for spherically shaped object around it's center is given as
I = (2/5) mr²
substituting the r = 3m²
I = (2/5)*(9) m3
I = 3.6 m3