Answer:
Methyl radical
Explanation:
A radical is any specie that contains an odd number of electrons. We must note that the greater the number of alkyl groups which are attached to a carbon atom that bears the odd electrons, the more the degree of delocalization of the odd electrons and consequently the more stable we expect the free radical to be.
Hence the order of free radical stability is; Methyl < Primary < Secondary < Tertiary. Hence, we can easily see that the methyl radical is the least stable free radical.
<u>Answer:</u> The mass of iron (II) oxide that must be used in the reaction is 30.37
<u>Explanation:</u>
The given chemical reaction follows:

By Stoichiometry of the reaction:
When 635 kJ of energy is released, 6 moles of iron (II) oxide is reacted.
So, when 44.7 kJ of energy is released,
of iron (II) oxide is reacted.
Now, calculating the mass of iron (II) oxide by using the equation:

Moles of iron (II) oxide = 0.423 moles
Molar mass of iron (II) oxide = 71.8 g/mol
Putting values in above equation, we get:

Hence, the mass of iron (II) oxide that must be used in the reaction is 30.37
Density = mass / volume
slope = y axis / x axis
So, slope equals the density
Answer:
Los metaloides serían los elementos con propiedades intermedias. No existe una definición estandarizada de elemento metaloide ni un consenso completo sobre los elementos que son metaloides. A pesar de la falta de especificidad en el término, es muy utilizado en los textos químicos, tanto educativos como divulgativos o de investigación.
Explanation:
Answer:
A saturated solution can become supersaturated when it is cooled. The solubility of solid solutes in liquid solvents increases as the solvent is warmed up. For example, you can dissolve more sugar in warm water as opposed to cold water.