Answer:
26.0 g/mol is the molar mass of the gas
Explanation:
We have to combine density data with the Ideal Gases Law equation to solve this:
P . V = n . R .T
Let's convert the pressure mmHg to atm by a rule of three:
760 mmHg ____ 1 atm
752 mmHg ____ (752 . 1)/760 = 0.989 atm
In density we know that 1 L, occupies 1.053 grams of gas, but we don't know the moles.
Moles = Mass / molar mass.
We can replace density data as this in the equation:
0.989 atm . 1L = (1.053 g / x ) . 0.082 L.atm/mol.K . 298K
(0.989 atm . 1L) / (0.082 L.atm/mol.K . 298K) = 1.053 g / x
0.0405 mol = 1.053 g / x
x = 1.053 g / 0.0405 mol = 26 g/mol
Answer:
1.155 moles of potassium nitrate are required to make 550 mL of a 2.1M solution.
Explanation:
In a mixture, the chemical present in the greatest amount is called a solvent, while the other components are called solutes.
Molarity is a unit of concentration of a solution and indicates the amount of moles of solute that appear dissolved in each liter of the mixture. In other words, the Molarity (M) or Molar Concentration is the number of moles of solute that are dissolved in a given volume.
The Molarity of a solution is determined by the following expression:

Molarity is expressed in units (
).
In this case:
- Molarity= 2.1 M
- number of moles of solute= ?
- Volume= 550 mL= 0.550 L (being 1L=1000 mL)
Replacing:

Solving:
number of moles of solute= 2.1 M* 0.550 L
number of moles of solute= 1.155 moles
1.155 moles of potassium nitrate are required to make 550 mL of a 2.1M solution.
The answer to this question is a
Explanation:
The tidal forces of the Moon are much stronger than the Sun's because it is so much closer to our planet, causing a much greater variation in the gravitational force from one location to another. The Sun's gravitational force, on the other hand, varies much less because the Sun is so far.
<h2>Please mark me has brainliest </h2>