1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vivado [14]
3 years ago
11

Use the pie section above to answer this question.

Chemistry
1 answer:
egoroff_w [7]3 years ago
4 0
The answer is Liquid iron.
You might be interested in
99 POINTS!!!!!! PLEASE HELP ASAP!!!!!
ohaa [14]
What you can do is organize them by color, what matter they are in room temperature, their molecular structure, or what kind of conductor in electricity and heat it is. I'm not sure what the format is supposed to look like but first just organize them all in different categories.
5 0
3 years ago
Read 2 more answers
If liquid water ___ energy it will become ice
kati45 [8]

Answer:

the answer is 1- loses

Explanation:

When water freezes it gives up some of the water's energy.

6 0
3 years ago
A volume of 100 mL of 1.00 M HCl solution is titrated with 1.00 M NaOH solution. You added the following quantities of 1.00 M Na
s344n2d4d5 [400]

Answer:

a: before equivalence point

b: equivalence point

c: before equivalence point

d: after the eqivalence point

e: before equivalence point

f:  after the eqivalence point

Explanation:

Balanced equation of reaction:

NaOH +HCl =NaCl +H2O;

Volume of HCl is fixed and it 100ml and concentration is 1.0M

N1 and N2 normality of HCl and NaOH respectively;

V1 and V2 volume of HCl and NaOH respectively;

we have given molarity but we need normality;

Normality=molarity \times n-factor

<em>but in case of NaOH and HCl n-factor is 1 for each.</em>

hence

normality=molarity;

At equivalence point:  N_1V_1=N_2V_2

Before equivalence point : N_1V_1>N_2V_2

After the equivalence point: N_1V_1

N_1V_1=100\times1=100

case a:  5.00 mL of 1.00 M NaOH

N_2V_2=5\times1=5

N_1V_1>N_2V_2 hence it is before equivalence point

case b: 100mL of 1.00 M NaOH

N_2V_2=100\times1=100

N_1V_1=N_2V_2 hence it is equivalence point

case c:  10.0 mL of 1.00 M NaOH

N_2V_2=10\times1=10

N_1V_1>N_2V_2 hence it is before equivalence point

case d: 150 mL of 1.00 M NaOH

N_2V_2=150\times1=150

N_1V_1 hence it is after the eqivalence point

case e: 50.0 mL of 1.00 M NaOH

N_2V_2=50\times1=50

N_1V_1>N_2V_2 hence it is before equivalence point

case f: 200 mL of 1.00 M NaOH

N_2V_2=200\times1=200

N_1V_1 hence it is after the eqivalence point

7 0
3 years ago
Dolomite is a mixed carbonate of calcium and magnesium. Calcium and magnesium carbonates both decompose upon heating to produce
Setler79 [48]

Answer:

72.03 %

Explanation:

Total mass of dolomite = 9.66 g

Let the mass of Magnesium carbonate = x g

The mass of calcium carbonate = 9.66 - x g

Calculation of the moles of Magnesium carbonate as:-

Molar mass of Magnesium carbonate = 122.44 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{x\ g}{84.3139\ g/mol}=\frac{x}{84.3139}\ mol

Calculation of the moles of calcium carbonate as:-

Molar mass of calcium carbonate = 100.0869 g/mol

Thus,

Moles= \frac{9.66 - x\ g}{100.0869\ g/mol}=\frac{9.66 - x}{100.0869}\ mol

According to the reaction shown below:-

MgCO_3\rightarrow MgO+CO_2

CaCO_3\rightarrow CaO+CO_2

In both the cases, the oxides formed from the carbonates in the 1:1 ratio.

So, Moles of MgO = \frac{x}{84.3139}\ mol

Molar mass of MgO = 40.3044 g/mol

Thus, Mass = Moles*Molar mass = \frac{x}{84.3139}\times 40.3044 \ g

Moles of CaO = \frac{9.66 - x}{100.0869}\ mol

Molar mass of CaO = 56.0774 g/mol

Thus, Mass = Moles*Molar mass = \frac{9.66 - x}{100.0869}\times 56.0774 \ g

Given that total mass of the oxide = 4.84 g

Thus,

\frac{x}{84.3139}\times 40.3044 +\frac{9.66 - x}{100.0869}\times 56.0774=4.84

\frac{40.3044x}{84.3139}+56.0774\times \frac{-x+9.66}{100.0869}=4.84

-694.1618435x+45673.48749\dots =40843.38968\dots

x=\frac{4830.09780\dots }{694.1618435}

x=6.9582

Thus, the mass of Magnesium carbonate = 6.9582 g

\%\ mass=\frac{Mass_{MgCO_3}}{Total\ mass}\times 100

\%\ mass=\frac{6.9582}{9.66}\times 100=72.03\ \%

3 0
3 years ago
Which of the following statements best describes a difference between mechanical waves and electromagnetic waves?
kipiarov [429]
The correct answer is the 3rd one  
6 0
3 years ago
Other questions:
  • Explain polarizing power with ionic radius​
    12·1 answer
  • What describes a property of matter ability to change into different substances
    11·1 answer
  • What is the atomic mass of an element if 4.00 grams of it contains 2.98x1022 atoms ?
    15·2 answers
  • Which of the following is a combustion reaction?
    5·2 answers
  • What type of gloves protects your hands from hazardous chemicals? A. Latex Gloves B. Padded Cloth Gloves C. Vinyl or Neoprene Gl
    13·2 answers
  • Ammonia (NH3) boils at -33∘C; at this temperature it has a density of 0.81 g/cm3. The enthalpy of formation of NH3(g) is -46.2 k
    11·1 answer
  • Write the total ionic equation for the reaction of hydrofluoric acid with potassium hydroxide. 1. koh(aq) hf(aq) → kf(s) h2o(ℓ)
    6·1 answer
  • To convert from mass of X to liters of Y in any stoichiometry problem, the following steps must be followed
    13·1 answer
  • How many moles of copper would be needed to make one mole of cu2o?
    5·1 answer
  • Identify the charge on the atom or ion that has one proton, zero neutrons, and zero electrons.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!