This is a physical change.
Answer:
465mL
Explanation:
Volume of a solution, V =Mass of substance, m/(Molarity of the solution of the substance, M × molar mass of the substance, M.m)
Given in the question,
M=.132M
M.m=23+35.5 = 58.5g/mol
m=3.59g
V= 3.59/(.132×58.5)
V = 0.465L
Volume in mL = volume in L × 1000
= 0.465 × 1000 = 465mL
Therefore, 465mL of a .132M aqueous solution of sodium chloride, NaCl, must be taken to obtain 3.59 grams of the salt
The answer is (A).
Hope this helps :).
Answer:
FLASK B WHICH CONTAINS CO2 HAS THE HIGHEST NUMBER OF MOLECULES AS IT CONTAINS THE HIGHEST MOLECULAR MASS OF 44 G/MOL.
Explanation:
Flask A contains CH4
Flask B contaims CO2
Flask C contains N2
To know the flask containing the largest number of molecules, we find the molar mass of the molecules in the flask and the largest is the one with the highest number of the relative molecular mass.
Molecular Mass of CH4 (C = 12, H =1) = ( 12 + 1*4) g/mol
= 16 g/mol
Molecular mass of CO2 (C= 12, 0= 16) = (12 + 16*2) g/mol
= 12 + 32 g/mol
= 44 g/mol
Molecular mass of N2 (N=14) = 14 * 2 g/mol
= 28 g/mol
Hence, the flask with the largest number of molecules is the flask with the highest relative molecular mass. The highest molecular mass is 44 g/mol and it is for the gas CO2 in Flask B.
So therefore, Flask B has the highest number of molecules in it.