<span>Analytic chemistry because he is comparing to types of refined gasoline. </span>
1) The time depends on what the lab wanted you to do. It will tell you in the procedure when you are supposed to considered a reaction to be complete and you just measure the time for that to happen.
2) Most text books say that increasing the concentration of one or more reactants will increase the rate of the reaction. To prove this with your data you need to show that when you increased the concentration of one of the reactants, the reaction rate did increase. The results of this experiment are not enough to make a general statement since the experiment was not on a large enough scale to diffidently prove anything. (you could have been testing the one exception or had a error in one of your trials)
I hope this helps. Let me know in the comments if anything is unclear.
(The concentration of one or more of the reactants will increase the rate of the reaction. This is explained through the fact that all reactions require collisions that have certain orientations and a minimum energy level. By increasing the concentration of one or more reactants, you increase the number of collisions which increases the rate since requires collisions in order to occur.) <span />
Answer:
The partial pressure of oxygen (pO2) in alveolar air is higher (~13 kPa or 100 mmHg) than that of the venous blood (~5.3 kPa or 40 mmHg) flowing on the other side of the membrane, so oxygen diffuses from the alveoli to blood.
Answer:
a) NH₄NO₃ ⇒ N₂O + 2 H₂O
b) 1.69 × 10²³ molecules
Explanation:
Step 1: Write the balanced equation
NH₄NO₃ ⇒ N₂O + 2 H₂O
Step 2: Convert 11.2 g of NH₄NO₃ to moles
The molar mass of NH₄NO₃ is 80.04 g/mol.
11.2 g × 1 mol/80.04 g = 0.140 mol
Step 3: Calculate the moles of H₂O produced
0.140 mol NH₄NO₃ × 2 mol H₂O/1 mol NH₄NO₃ = 0.280 mol H₂O
Step 4: Calculate the number of molecules in 0.280 moles of water
We will use Avogadro's number.
0.280 mol × 6.02 × 10²³ molecules/1 mol = 1.69 × 10²³ molecules