Answer:
Explanation:
A component of 150 N in vertical direction will reduce the magnitude of reaction force.
reaction force exerted by the floor
= mg - 150 sin 30
where m is mass of the crate .
the magnitude of the horizontal component of the 150-newton force
150 cos30
= 130 N
This force tries to pull the crate in forward direction with acceleration but it has no acceleration . It is so because frictional force of equal magnitude acts on it in opposite direction which makes the net force acting on it equal to zero.
Hence frictional force is equal to 150 cos 30.
= 130 N .
Answer:
5 moles of O2are required, you can see it in your equation.
<h3><u>Answer;</u></h3>
D) Standing wave
<h3><u>Explanation;</u></h3>
- Standing wave also called stationary wave is a wave which oscillates in time but whose peak amplitude profile does not move in space.
- A standing wave pattern is a vibrational pattern created within a medium when the vibrational frequency of the source causes reflected waves from one end of the medium to interfere with incident waves from the source.
- Examples of standing waves include the vibration of a violin string and electron orbitals in an atom.
0.25 m/s squared
hope this helps x
Explanation:
It is given that, the height of a certain tower is 862 feet i.e to reach on the ground the object should travel, s = 862 feet
The distance traveled by a freely falling object is given by :



t = 7.34 seconds
So, the object will take 7.34 seconds to fall to the ground from the top of the building. Hence, this is the required solution.