<span>Kinetic energy because it is taking the students to school.</span>
Answer:
B. Maximum velocity of ejected electrons.
Explanation:
The ejection of electrons form a metal surface when the metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength or higher frequency (or equivalently, above a threshold frequency), which leads to the enough energy of the wave to incident and get absorbed to the exposed surface emits electrons. This phenomenon is known as the photoelectric effect or photo-emission.
The minimum amount of energy required by a metal surface to eject an electron from its surface is called work function of metal surface.
The electrons thus emitted are called photo-electrons.
The current produced as a result is called photo electricity.
Energy of photon is given by:

where:
h = Planck's constant
frequency of the incident radiation.
Hi there!
We can begin by calculating the time the ball takes to reach the highest point of its trajectory, which can be found using the following:

Where:
tmax = (? sec)
vsinθ = vertical comp. of velocity = 10sin(48) = 7.43 m/s)
g = acceleration due to gravity (9.8 m/s²)
We can solve for this time:

When the ball is at the TOP of its trajectory, its VERTICAL velocity is equivalent to 0 m/s. Thus, we can consider this a free-fall situation.
We must begin by solving for the maximum height reached by the ball using the equation:

d = displacement (m)
vi = initial velocity (7.43 m/s)
a = acceleration due to gravity
d = displacement (m)
y0 = initial VERTICAL displacement (28m)
Plug in the values:

Now, we can use the rearranged kinematic equation:


Add the two times together:

A Belgian Astronomer and Cosmotologist who formulated the modern Big Bang theory, which states that the universe began in a cataclysmic explosion of a small, primeval “super-atom”