Answer:
The answer to your question is below
Explanation:
To explain what happens with the ball we must remember the Law of Conservation of Energy.
This law states that the energy can be neither created nor destroyed only converted from one form of energy to another.
Then,
At the top of the hill, the potential energy is maximum and the kinetic energy equals to zero.
When the ball starts to roll down the potential energy will be lower and the kinetic energy will have a low value.
At the middle of the hill, both energies have the same values.
At the end of the hill, the potential energy will be equal to zero and the kinetic energy will be maximum.
Formula: PE = mgh
m = 20 kg, g = 9.8 m/s^2 h= ?
1000 = 20 * 9.8 * h
1000 = 196h
h = 5.10204082
The height is around 5m
The answer is d! I’m happy to help :)
Explanation:
the object has constant velocity for 2 seconds and it get a constant accelration (2ms-2)
Answer:
Equal to 5000N
Explanation:
The stress on the material is defined by force per unit of cross-sectional area. So it depends on the force and the diameter of the wire, which is the same for both wires. The material that defines the breaking point, is also the same. Therefore, both wires have their breaking point the same at 5000N. The wire length plays no role in here.