Answer:

i) angle of incidence;i = 29.43°

ii) δm = 38.92°

Explanation:

Prism is equilateral so angle of prism (A) = 60°

Refractive index of glass; n_glass = 1.52

A) Let's assume the incident angle = i and Critical angle = θc

We know that, sin θc = 1/n

Thus;

sin θc = 1/n_glass

θc = sin^(-1) (1/n_glass)

θc = sin^(-1) (1/1.52)

θc = 41.14°

Now, the angle of prism will be the sum of external angle that is critical angle and reflected angle.

Thus;

A = r + θc

r = A - θc

So;

r = 60° - 41. 14°

r = 18.86°

From, Snell's law. If we apply it to this question, we will have;

(sin i)/(sin r) = n_glass

Where;

i is angle of incidence and r is angle of reflection.

Let's make i the subject;

i = sin^(-1) (n_glass × sin r)

i = sin^(-1) (1.52 × sin 18.86)

i = sin^(-1) 0.4914

i = 29.43°

B) The formula to calculate minimum deviation would be from;

μ = [sin ((A + δm)/2)]/(sin A/2)

Where;

μ is Refractive index

δm is minimum angle of deviation

A is angle of prism

Now Refractive index is given by a formula; μ = (sin i)/(sin r)

So; μ = (sin 29.43)/(sin 18.86)

μ = 1.52

Thus;

1.52 = [sin ((60 + δm)/2)]/(sin 60/2)

1.52 * sin 30 = sin ((60 + δm)/2)

0.76 = sin ((60 + δm)/2)

sin^(-1) 0.76 = ((60 + δm)/2)

49.46 × 2 = (60 + δm)

98.92 - 60 = δm

δm = 38.92°