Answer:
I don't really know this one sorry
Answer:
14 cm
Explanation:
F = (frac{uv}{u – v})
F = +ve
v = -ve
30 = (frac {25 {times} (-v)}{25 – (-v)})
v = (frac {25 {times} (-v)}{25+v})
v = 14cm
(Note that either negative or positive values go to show the positioning and hence, they are not a strong necessity in your final answer.)
So happy that i could help you!
Now this question could turn out to be easy for you!!
Hi!
The answer would be A. Isobaric Process
<h3>Explanation:</h3>
Isobaric process is a process where the pressure inside a system remains unchanged. In the Pressure Volume graph given, you can see that the pressure (y axis) remains constant with an increasing volume ( x axis). An example of this would be heating a container with a movable piston. Now, the degree of pressure is dependent on the frequency of collisions of particles inside a system on the walls. If this frequency changes, the pressure changes (proportionally). In our example, heating a container with a movable piston results in the particles inside the container to gain kinetic energy and move faster, meaning an increased frequency of collisions (higher pressure), but at the system time the increase in pressure results in the piston being pushed outwards, causing the volume of the container to increase. This results in decreased frequency of collision of the particles with the walls of the container (lesser pressure). This results in the a zero net effect on the pressure.
Hope this helps!
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
Answer:
0.5 m/s2
Explanation:
accelration formula : final velocty - starting velocity divided by time