This is an incomplete question, here is a complete question.
The conversion of cyclopropane to propene occurs with a first-order rate constant of 2.42 × 10⁻² hr⁻¹. How long will it take for the concentration of cyclopropane to decrease from an initial concentration 0.080 mol/L to 0.053 mol/L?
Answer : The time taken will be, 17.0 hr
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial concentration of the reactant = 0.080 M
a - x = concentration left = 0.053 M
Now put all the given values in above equation, we get


Therefore, the time taken will be, 17.0 hr
Yes it is a exothermic reaction.
Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.
Answer:
Boiling - when the liquid is heated to a gas.
Evaporating - when the air temperature is hotter than the surface of the liquid so the water turns into water vapor or a gas.
Explanation:
Answer:
v = 23.96 cm³
Explanation:
Given data:
Mass = 15.0 g
Density = 0.626 g/cm³
Volume = ?
Solution:
Formula:
D=m/v
D= density
m=mass
V=volume
Now we will put the values in formula:
d = m/v
v = m/d
v = 15 g / 0.626 g/cm³
v = 23.96 cm³