You should put a 3. That way there are 6 H and 3 O on each side.
Answer:
-15-12-14=-13
Explanation:
we simplify by opening the bracket
Answer:
Mass of original sample = 100 g
Explanation:
Half life of cesium-137 = 30.17 years
Where, k is rate constant
So,
The rate constant, k = 0.02297 year⁻¹
Time = 90.6 years
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Initial concentration
= ?
Final concentration
= 12.5 grams
Applying in the above equation, we get that:-
![[A_0]=\frac{12.5}{e^{-0.02297\times 90.6}}\ g=100\ g](https://tex.z-dn.net/?f=%5BA_0%5D%3D%5Cfrac%7B12.5%7D%7Be%5E%7B-0.02297%5Ctimes%2090.6%7D%7D%5C%20g%3D100%5C%20g)
<u>Mass of original sample = 100 g</u>
If molecules are in a closed container then we expect the pressure to increase as the kinetic energy increases. This is because the atoms of an element collide with the walls of the container and increase the pressure.
If we use the formula
, where P is the pressure, V is the volume, n is the number of moles, R the ideal gas constant and T is the temperature. According to the formula, P is directly proportional to temperature. An increase in temperature leads to an increase in pressure.
Since we know that temperature is the average kinetic energy of molecules present. It means as we increase the temperature we increase the kinetic energy of the molecules which in turn leads to an increase in the pressure.