Answer:

Explanation:
We must do the conversions
mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 180.16
C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O
m/g: 24.5
(a) Moles of C₆H₁₂O₆

(b) Moles of CO₂

(c) Volume of CO₂
We can use the Ideal Gas Law.
pV = nRT
Data:
p = 0.960 atm
n = 0.8159 mol
T = 37 °C
(i) Convert the temperature to kelvins
T = (37 + 273.15) K= 310.15 K
(ii) Calculate the volume

The balanced reaction is as below
3A₂B + 2DC₃→ 6 AC + D₂B₃
The number that must be to the left of AC is 6
Explanation
- According to the law of mass conservation , the number of atoms in reactant side must be equal to number to the number of atoms in product side.
- Therefore the equation above is balance since it obey the law of mass conservation.
- For example there is 6 atoms of A in reactant side and 6 in product side.
Answer:
Option b. 0.048 M
Explanation:
We have the molecular weight and the mass, from sulcralfate.
Let's convert the mass in g, to moles
1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.
Molarity is mol /L
Let's convert the volume of solution in L
10 mL . 1L/1000 mL = 0.01 L
4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L
Explanation:
Thomson's suggested the plum pudding model of the atom in which the atomic space is made up of electrons surround by positive charges.
Rutherford in his gold foil experiment revised the plum pudding model of the atom;
- He discovered that most of the alpha particles passed through the foil while a few of them were deflected back.
- To explain this observation, he suggested the atomic model of the atom.
- In this model, an atom is made up of a small positively charged center where nearly all the mass is concentrated.
- Surrounding the nucleus is the extranuclear part made up of electrons.