Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Answer:
P = 450 J
Explanation:
Given that,
Mass of a child, m = 18 kg
The vertical distance from the top to the bottom of the slide is 2.5 metres.
The Gravitational field strength = 10 N/kg
We need to find the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.
The formula for the gravitational potential energy is given by :
P = mgh
Substituting all the values,
P = 18 kg × 10 m/s² × 2.5 m
P = 450 J
Hence, the decrease in gravitational potential energy is 450 J.
Answer:
The radius of the curve is 9,183.67 m.
Explanation:
Given;
velocity of the jet plane, v = 600 m/s
acceleration of the jet plane, a = 4g = 4 x 9.8 m/s² = 39.2 m/s²
The radius of the curve is calculated from centripetal acceleration formula as given below;

Therefore, the radius of the curve is 9,183.67 m.
Answer:
The difference between the velocity graph made walking at a steady rate means that its the same value in time, that means there's no slope on the graph, so its acceleration is 0
On the other hand, if the velocity is increasing with time, the slope of the graph becomes positive, which means that the acceleration of the particle is positive.