Answer:
<h2><u>Reason:</u></h2>
Catalyst is used as a very fine powder and larger pieces of iron are not used. This is because the surface area of catalyst needs to be large so that more of the surface is exposed to the substrate and more of the substrate is catalyzed.
<h2><u>Important Info:</u></h2>
=> Larger Pieces of Iron has a smaller surface area than the fine particles.
=> Larger the surface area of catalysts/enzymes , more will be the reaction rate and vice versa.
Hope this helped!
<h2>~AnonymousHelper1807</h2>
Limes and lemons have a ph of 2 and are acidic.
Answers:
A) 2040 kg/m³; B) 58 600 km
Explanation:
A) Density


<em>B) Radius</em>



![r= \sqrt [3]{ \frac{3V }{4 \pi } }](https://tex.z-dn.net/?f=r%3D%20%5Csqrt%20%5B3%5D%7B%20%5Cfrac%7B3V%20%7D%7B4%20%5Cpi%20%7D%20%7D)
![r= \sqrt [3]{ \frac{3\times 8.268 \times 10^{23} \text{ m}^{3}}{4 \pi } }= \sqrt [3]{ 1.974 \times 10^{23} \text{ m}^{3}}= 5.82 \times 10^{7} \text{ m}=\text{58 200 km}](https://tex.z-dn.net/?f=r%3D%20%5Csqrt%20%5B3%5D%7B%20%5Cfrac%7B3%5Ctimes%208.268%20%5Ctimes%2010%5E%7B23%7D%20%5Ctext%7B%20m%7D%5E%7B3%7D%7D%7B4%20%5Cpi%20%7D%20%7D%3D%20%5Csqrt%20%5B3%5D%7B%201.974%20%5Ctimes%2010%5E%7B23%7D%20%5Ctext%7B%20m%7D%5E%7B3%7D%7D%3D%205.82%20%5Ctimes%2010%5E%7B7%7D%20%5Ctext%7B%20m%7D%3D%5Ctext%7B58%20200%20km%7D)
To determine the molar mass, you need to get the atomic mass of the molecule. To do this, check the periodic table for the atomic mass or average atomic weight of each element.
Mg = 24.305 x 1 = 24.305 amu
O = 15.9994 x 2 =31.9988 amu
H = 1.0079 x 2 = 2.0158 amu
Then, add all the components to get the atomic mass of the molecule.
24.305 amu + 31.9988 amu + 2.0158 amu = 58.3196 amu
The atomic mass is just equivalent to its molar mass.
So, the molar mass of Magnesium hydroxide (Mg(OH)2) is 58.3196 g/mol.
Answer is: carbon.
<span>During gamma emission the nucleus emits radiation without
changing its composition, if for example have nucleus with six
protons and six neutrons (carbon atom) and after gamma decay there
is nucleus with six protons and six neutrons.
Gamma rays are the electromagnetic waves with
the shortest wavelengths (1 pm), highest frequencies (300 EHz) and
highest energy (1,24 MeV).</span>