<h3>Answer:</h3>
64 g O₂
<h3>General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 36 g H₂O
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol O₂ → 2 mol H₂O
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mas of H - 1.01 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:
- Divide/Multiply [Cancel Units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
63.929 g O₂ ≈ 64 g O₂
Answer:
attached below
Explanation:
Structure of two acyclic compounds with 3 or more carbons that exhibits one singlet in 1H-NMR spectrum
a) Acetone CH₃COCH₃
Attached below is the structure
b) But-2-yne (CH₃C)₂
Attached below is the structure
Answer:
Imma just say acids have more acidity and bases have lower acidity...
Answer:
- Last choice: <em><u>- 3.72°C</u></em>
Explanation:
The freezing point depression in a solvent is a colligative property: it depends on the number of solute particles.
The equation to predict the freezing point depression in a solvent is:
Where,
- ΔTf is the freezing point depression of the solvent,
- Kf is the cryoscopic molal constant of the solvent, and i is the Van'f Hoff factor, which is the number of ions produced by each unit formula of the ionic compound.
The calcualtions are in the attached pdf file. Please, open it by clicking on the image of the file.