Answer:
I think D
Explanation:
Kinetic energy has a direct relationship with mass, meaning as mass increases so does the kinetic Energy of an object.
Molality= moles NaCl/ Kg H2O
250 g (1 Kg/ 1000 grams)= 0.250 Kg
Molality= 0.611 moles/ 0.250 Kg= 2.44 molal
Answer:
Mole fraction of
= 0.58
Mole fraction of
= 0.42
Explanation:
Let the mass of
and
= x g
Molar mass of
= 33.035 g/mol
The formula for the calculation of moles is shown below:
Thus,
Molar mass of
= 46.07 g/mol
Thus,
So, according to definition of mole fraction:

Mole fraction of
= 1 - 0.58 = 0.42
<span>Let's assume
that the oxygen gas has ideal gas behavior.
Then we can use ideal gas formula,
PV = nRT</span>
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol⁻¹ K⁻¹) and T is temperature in Kelvin.
<span>
P = 2.2 atm = 222915 Pa
V = 21 L = 21 x 10</span>⁻³ m³
n = ?
R = 8.314 J mol⁻¹ K⁻¹
<span>
T = 87 °C = 360 K
By substitution,
</span>222915 Pa x 21 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻<span>¹ x 360 K
n
= 1.56</span><span> mol</span>
<span>
Hence, 1.56 moles of the oxygen gas are </span><span>
left for you to breath.</span><span>
</span>