a. Hydrogen
Hydrogen has a line at 410 nm.
Mercury has a line at 405 nm.
Sodium and neon have no lines near 412 nm.
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
I looked up what is the molecular formula for Phosphine and got this: PH3
Hope this helps! Let my know if this was correct.
Answer:
8.3028894e-22
Explanation:
5x10^2 atoms/1 x 1 mol/6.022x10^23
For this, we first calculate molecular weight of MgSiO₃:
Atomic masses:
Mg = 24
Si = 28
O = 16
Mr = 24 + 28 + 16 x 3
Mr = 100
moles = mass / Mr
moles = 237 / 100
moles = 2.37