Hello!
Ok so for this problem we use the ideal gas law of PV=nRT and I take it that the scientist needs to store 0.400 moles of gas and not miles.
So if we have
n=0.400mol
V=0.200L
T= 23degC= 273k+23c=296k
R=ideal gas constant= 0.0821 L*atm/mol*k
So now we rearrange equation for pressure(P)
P=nRT/V
P=((0.400mol)*(0.0821 L*atm/mol*k)*(296k))/(0.200L) = 48.6 atm of pressure
Hope this helps you understand the concept and how to solve yourself in the future!! Any questions, please feel free to ask!! Thank you kindly!!!
Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
<h3>What is the equilibrium constant?</h3>
In a reaction, we can judge using the value of the equilibrium constant weather or not the reaction moves on to completion. If the reaction moves up to completion, it the follows that the value of the equilibrium constant ought to be large.
On the other hand, when we have a case that the equilibrium constant is small and is not so large, then the reaction does not proceed essentially to completion.
Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
Learn more about equilibrium constant:brainly.com/question/10038290
#SPJ1
A rock is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition and the way in which it is formed
the energy gained by proteins and carbohydrates differs from the energy gained by fats.
proteins and carbohydrates both give 4 kcal per gram
fats give 9 kcal per gram
mass of proteins - 2 g
energy given by proteins - 2 g x 4 kcal/g = 8 cal
mass of carbohydrates - 20 g
energy given by carbohydrates - 20 g x 4 kcal/g = 80 cal
mass of fat - 1 g
energy given by fat - 1 g x 9 kcal/g = 9 cal
total energy = 8 + 80 + 9 = 97 kcal
energy = 97 kcal
Answer:
Evaporation
Explanation:
Evaporation is the certain process that requires water to gain heat energy from the environment.