Answer:
Answers are in the explanation
Explanation:
Ksp of CdF₂ is:
CdF₂(s) ⇄ Cd²⁺(aq) + 2F⁻(aq)
Ksp = 6.44x10⁻³ = [Cd²⁺] [F⁻]²
When an excess of solid is present, the solution is saturated, the molarity of Cd²⁺ is X and F⁻ 2X:
6.44x10⁻³ = [X] [2X]²
6.44x10⁻³ = 4X³
X = 0.1172M
<h3>[F⁻] = 0.2344M</h3><h3 />
Ksp of LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
Ksp = 1.84x10⁻³ = [Li⁺] [F⁻]
When an excess of solid is present, the solution is saturated, the molarity of Li⁺ and F⁻ is XX:
1.84x10⁻³ = [X] [X]
1.84x10⁻³ = X²
X = 0.0429
<h3>[F⁻] = 0.0429M</h3><h3 /><h3>The solution of CdF₂ has the higher fluoride ion concentration</h3>
Answer:
Explanation:
To find the concentration; let's first compute the average density and the average atomic weight.
For the average density ; we have:
The average atomic weight is:
So; in terms of vanadium, the Concentration of iron is:
From a unit cell volume
where;
= number of Avogadro constant.
SO; replacing with ; with ; with and
with
Then:
Replacing the values; we have:
Valence electrons are shared in covalent bonds
Answer:
hmmmmmmmmmmmmmmmmmmm
Explanation:
not sure tbh, ask ur teacher unless someone else helps you!