1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
2 years ago
11

6) A deep underground cavern Contains 980 cuft

Engineering
1 answer:
Elza [17]2 years ago
3 0

Answer:

15625 moles of methane is present in this gas  deposit

Explanation:

As we know,

PV = nRT

P = Pressure = 230 psia = 1585.79 kPA

V = Volume = 980 cuft = 27750.5 Liters

n = number of moles

R = ideal gas constant = 8.315

T = Temperature = 150°F = 338.706 Kelvin

Substituting the given values, we get -

1585.79 kPA * 27750.5 Liters = n * 8.315 * 338.706 Kelvin

n = (1585.79*27750.5)/(8.315 * 338.706) = 15625

You might be interested in
3. Air at 1 atm and 20 0 C flows tangentially on both sides of a smooth flat plate of width W=10 ft and length L=10 ft in the di
8_murik_8 [283]

Answer:

ExplanationAir at 1 atm and 20°C flows tangentially on both sides of a thin, smooth flat plate of ... ... Smooth Flat Plate Of Width W = 10 Ft, And Of Length L 3 Ft In The Direction Of The Flow. The Velocity Outside The Boundary Layer Is Constant At 20 Ft/s.

:

6 0
3 years ago
) Assuming different AM regulations; the receiver is using mixer with subtracting format. The frequency selectivity ratio is app
Zarrin [17]

Answer:

F=710KHZ

Explanation:

From the question we are told that:

Frequency selectivity ratio R=10

AM range 750 kHz to 2600 kHz

Therefore Bandwidth is

 B=2100-680

 B=1420KHZ

Generally the equation for The intermediate frequency is mathematically given by

Intermediate frequency=\frac{Bandwidth}{2}

 F=\frac{B}{2}

 F=\frac{1420}{2}

 F=710KHZ

8 0
3 years ago
Consider a very long, cylindrical fin. The temperature of the fin at the tip and base are 25 °C and 50 °C, respectively. The dia
Mrrafil [7]

Answer:

The fin temperature in °C at a distance of 10 cm from the base = 33.78°C

Explanation:

The following assumptions will be made to solve this problem

- The heat transfer coefficient does not change with the time or distance.

- The temperature of the fins varies just in only one direction.

The temperature of the fin at x = 10 cm = 0.10 m from the base can be calculated from the temperature variation with distance formula for a very long fin.

(T - T∞) = (T₀ - T∞)e⁻ᵐˣ

T = T(x) = temperature at any point along the fin

T∞ = temperature at the tip of the fin = ambient temperature = 25°C

T₀ = temperature at the base of thw fin = 50°C

x = any distance along the length of the fin from the base of the fin = 0.1 m

m = √(hP/KA)

h = Heat transfer coefficient = 123 W/m².K

P = perimeter in contact with the base = πD = π × 0.03 = 0.0943 m

K = thermal conductivity = 150 W/m.K

A = surface area in contact with the base = πD²/4 = π(0.03)²/4 = 0.0007071 m²

m = √(123 × 0.0943)/(150 × 0.0007071)

m = 10.46

mx = 10.46 × 0.1 = 1.046

(T - 25) = (50 - 25) e⁻¹•⁰⁴⁶

T = 25 + 25 e⁻¹•⁰⁴⁶ = 25 + 8.78 = 33.78°C

8 0
2 years ago
Careful planning will save time, __________, and energy while ensuring the production of a high quality product.
Svet_ta [14]
Juicers nb 345676 at that rate it will be amazing
5 0
2 years ago
If the old radiator is replaced with a new one that has longer tubes made of the same material and same thickness as those in th
Nookie1986 [14]

Answer: hello some parts of your question is missing attached below is the missing information

The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d  is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube

answer : Total surface area = 3/2 * area of old radiator

Explanation:

we will use this relation

K = \frac{Qd }{A* change in T }

change in T =  ΔT  

therefore New Area  ( A ) = 3/2 * area of old radiator

Given that the thermal conductivity is the same in the new and old radiators

3 0
3 years ago
Other questions:
  • A food-services company with a 480 V, three-phase service entrance has the following set of loads:  A 7 ton walk-in refrigerati
    13·1 answer
  • Identify each statement as referring to a series or parallel circuit.
    15·1 answer
  • Which of the following is the correct definition of mechanical energy?
    9·2 answers
  • How an AK 47 gun was works​
    14·1 answer
  • Although the viscoelastic response of a polymer can be very complex (time-dependent stress cycling for instance), two special lo
    11·1 answer
  • What does it mean to wire solar cells in parallel vs. wiring them in series? I always get these switched around.​
    10·1 answer
  • Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag
    14·1 answer
  • Air, at a free-stream temperature of 27.0°C and a pressure of 1.00 atm, flows over the top surface of a flat plate in parallel f
    13·1 answer
  • What is the locating position of the land field?​
    8·2 answers
  • The variation of the pressure of a fluid with density at constant temperature is known as the _____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!