Answer:
(b) 56%
Explanation:
the maximum thermal efficiency is possible only when power cycle is reversible in nature and when power cycle is reversible in nature the thermal efficiency depends on the temperature
here we have given T₁ (Higher temperature)= 600+273=873
lower temperature T₂=110+273=383
Efficiency of power cycle is given by =1-
=1-
=1-0.43871
=.56
=56%
The reason why giant stars become planetary nebulas is Supergiant stars do not have enough mass to generate the gravity necessary to cause a planetary nebula.
<h3>Why do giant stars become planetary nebulae?</h3>
A planetary nebula is known to be formed or created by a dying star. A red giant is known to be unstable and thus emit pulses of gas that is said to form a sphere around the dying star and thus they are said to be ionized by the ultraviolet radiation that the star is known to releases.
Learn more about giant stars from
brainly.com/question/27111741
#SPJ1
Answer:
a) -8 lb / ft^3
b) -70.4 lb / ft^3
c) 54.4 lb / ft^3
Explanation:
Given:
- Diameter of pipe D = 12 in
- Shear stress t = 2.0 lb/ft^2
- y = 62.4 lb / ft^3
Find pressure gradient dP / dx when:
a) x is in horizontal flow direction
b) Vertical flow up
c) vertical flow down
Solution:
- dP / dx as function of shear stress and radial distance r:
(dP - y*L*sin(Q))/ L = 2*t / r
dP / L - y*sin(Q) = 2*t / r
Where dP / L = - dP/dx,
dP / dx = -2*t / r - y*sin(Q)
Where r = D /2 ,
dP / dx = -4*t / D - y*sin(Q)
a) Horizontal Pipe Q = 0
Hence, dP / dx = -4*2 / 1 - 62.4*sin(0)
dP / dx = -8 + 0
dP/dx = -8 lb / ft^3
b) Vertical pipe flow up Q = pi/2
Hence, dP / dx = -4*2 / 1 - 62.4*sin(pi/2)
dP / dx = 8 - 62.4
dP/dx = -70.4 lb / ft^3
c) Vertical flow down Q = -pi/2
Hence, dP / dx = -4*2 / 1 - 62.4*sin(-pi/2)
dP / dx = -8 + 62.4
dP/dx = 54.4 lb / ft^3