Answer:
a) the object floats
b) the object floats
c) the object sinks
Explanation:
when an object is less dense than in the fluid in which it is immersed, it will float due to its weight and volume characteristics, so to solve this problem we must find the mass and volume of each object in order to calculate the density and compare it with that of water
a)
volumen for a cube
V=L^3
L=1.53in=0.0388m
V=0.0388 ^3=5.8691x10^-5m^3=58.69ml
density=m/v
density=13.5g/58.69ml=0.23 g/ml
The wooden block floats because it is less dense than water
b)
m=111mg=0.111g
density=m/v
density=0.111g/0.296ml=0.375g/ml
the metal paperclip floats because it is less dense than water
c)
V=0.93cups=220.0271ml
m=0.88lb=399.1613g
Density=m/v
density=399.1613/220.027ml=1.8141g/ml
the apple sinks because it is denser than water
Answer:
Input area=0.785x10^-4m^2
Output area=0.785x10^-6m^2
P1-p2=0.49x0.99v2
V1 =0.01v2
Explanation:
Please see attachment for step by step guide
Answer:
Explanation:
30 we know that radius is 18 and the circumference is 36pi and the time to go around is is 36pi/30=1.2pi≈3.76991118
It depends on the type of weather and on the type of construction but I would say False
Let me know if it’s correct
Have a great day :)
Answer:
835,175.68W
Explanation:
Calculation to determine the required power input to the pump
First step is to calculate the power needed
Using this formula
P=V*p*g*h
Where,
P represent power
V represent Volume flow rate =0.3 m³/s
p represent brine density=1050 kg/m³
g represent gravity=9.81m/s²
h represent height=200m
Let plug in the formula
P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m
P=618,030 W
Now let calculate the required power input to the pump
Using this formula
Required power input=P/μ
Where,
P represent power=618,030 W
μ represent pump efficiency=74%
Let plug in the formula
Required power input=618,030W/0.74
Required power input=835,175.68W
Therefore the required power input to the pump will be 835,175.68W