It is a reflecting telescope and a compound microscope. I know this for sure
Answer:
P = 450 J
Explanation:
Given that,
Mass of a child, m = 18 kg
The vertical distance from the top to the bottom of the slide is 2.5 metres.
The Gravitational field strength = 10 N/kg
We need to find the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.
The formula for the gravitational potential energy is given by :
P = mgh
Substituting all the values,
P = 18 kg × 10 m/s² × 2.5 m
P = 450 J
Hence, the decrease in gravitational potential energy is 450 J.
Answer:
Calculating Coefficient of friction is 0.229.
Force is 4.5 N that keep the block moving at a constant speed.
Explanation:
We know that speed expression is as
.
Where,
is initial speed, V is final speed, ∆s displacement and a acceleration.
Given that,
=3 m/s, V = 0 m/s, and ∆s = 2 m
Substitute the values in the above formula,

0 = 9 - 4a
4a = 9

is the acceleration.
Calculating Coefficient of friction:


Compare the above equation

Cancel "m" common term in both L.H.S and R.H.S





Hence coefficient of friction is 0.229.
calculating force:


F = 4.5 N
Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.
Answer:
Part 1) Voltage in secondary windings is 61.08 Volts
Part 2) Current in secondary windings is 0.53 Amperes
Explanation:
The potential developed in the primary and secondary winding of a transformer are related as

where
Np no of turns in primary coil
Ns no of turns in secondary coil
Vp Voltage of turns in primary coil
Vs Voltage of turns in secondary coil
Applying values in the formula we get

Part 2)
Using Ohm's law the current is given by
