Answer:
A. 1.4 m/s to the left
Explanation:
To solve this problem we must use the principle of conservation of momentum. Let's define the velocity signs according to the direction, if the velocity is to the right, a positive sign will be introduced into the equation, if the velocity is to the left, a negative sign will be introduced into the equation. Two moments will be analyzed in this equation. The moment before the collision and the moment after the collision. The moment before the collision is taken to the left of the equation and the moment after the collision to the right, so we have:

where:
M = momentum [kg*m/s]
M = m*v
where:
m = mass [kg]
v = velocity [m/s]

where:
m1 = mass of the basketball = 0.5 [kg]
v1 = velocity of the basketball before the collision = 5 [m/s]
m2 = mass of the tennis ball = 0.05 [kg]
v2 = velocity of the tennis ball before the collision = - 30 [m/s]
v3 = velocity of the basketball after the collision [m/s]
v4 = velocity of the tennis ball after the collision = 34 [m/s]
Now replacing and solving:
(0.5*5) - (0.05*30) = (0.5*v3) + (0.05*34)
1 - (0.05*34) = 0.5*v3
- 0.7 = 0.5*v
v = - 1.4 [m/s]
The negative sign means that the movement is towards left
Answers:(a) 
μT
(b) 
μm
(c) f =
Explanation:Given electric field(in y direction) equation:

(a) The amplitude of electric field is

. Hence
The amplitude of magnetic field oscillations is

Where c = speed of light
Therefore,

μT (Where T is in seconds--signifies the oscillations)
(b) To find the wavelength use:



μm
(c) Since c = fλ
=> f = c/λ
Now plug-in the values
f = (3*10^8)/(0.4488*10^-6)
f =
Solution :
Given
Diameter of the roulette ball = 30 cm
The speed ball spun at the beginning = 150 rpm
The speed of the ball during a period of 5 seconds = 60 rpm
Therefore, change of speed in 5 seconds = 150 - 60
= 90 rpm
Therefore,
90 revolutions in 1 minute
or In 1 minute the ball revolves 90 times
i.e. 1 min = 90 rev
60 sec = 90 rev
1 sec = 90/ 60 rec
5 sec = 
= 75 rev
Therefore, the ball made 75 revolutions during the 5 seconds.
Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.