Answer:
1) No, the car does not travel at constant speed.
2) V = 9 ft/s
3) No, the car does not travel at constant speed.
4) V = 5.9 ft/s
Explanation:
In order to know if the car is traveling at constant speed we need to derive the given formula. That way we get speed as a function of time:
V(t) = 2*t + 2 Since the speed depends on time, the speed is not constant at any time.
For the average speed we evaluate the formula for t=2 and t=5:
d(2) = 8 ft and d(5) = 35 ft

Again, for the average speed we evaluate the formula for t=1.8 and t=2.1:
d(1.8) = 6.84 ft and d(2.1) = 8.61 ft

I have no idea
sorry
good luck thooooo!!
Answer:
The 10 kg rock has more inertia than the other two rocks.
Explanation
Answer
given,
flow rate = p = 660 kg/m³
outer radius = 2.8 cm
P₁ - P₂ = 1.20 k Pa
inlet radius = 1.40 cm
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₁² v₂



Applying Bernoulli's equation





v₂ = 1.97 m/s
b) fluid flow rate
Q = A₂ V₂
Q = π (0.014)² x 1.97
Q = 1.21 x 10⁻³ m³/s
Answer:
Δx = 39.1 m
Explanation:
- Assuming that deceleration keeps constant during the braking process, we can use one of the kinematics equations, as follows:

where vf is the final velocity (0 in our case), v₀ is the initial velocity
(25 m/s), a is the acceleration (-8.0 m/s²), and Δx is the distance
traveled since the brakes are applied.
- Solving (1) for Δx, we have: