Answer:
1.01 × 1013 picometres
Explanation:
multiply the length value by 1e+9
Explanation:
The given data is as follows.
Length of beam, (L) = 5.50 m
Weight of the beam, (
) = 332 N
Weight of the Suki, (
) = 505 N
After crossing the left support of the beam by the suki then at some overhang distance the beam starts o tip. And, this is the maximum distance we need to calculate. Therefore, at the left support we will set up the moment and equate it to zero.

= 0
x = 
= 
= 0.986 m
Hence, the suki can come (2 - 0.986) m = 1.014 from the end before the beam begins to tip.
Thus, we can conclude that suki can come 1.014 m close to the end before the beam begins to tip.
Explanation:
If two particles are involved in an elastic collision, the velocity of the second particle after collision can be expressed as: v2f=2⋅m1(m2+m1)v1i+(m2−m1)(m2+m1)v2i v 2 f = 2 ⋅ m 1 ( m 2 + m 1 ) v 1 i + ( m 2 − m 1 ) ( m 2 + m 1 ) v 2 i .
Answer:
The maximum volume is 1417.87 
Explanation:
<u>Optimization Using Derivatives</u>
We have a 24x30 inch piece of metal and we need to make a rectangular box by cutting a square from each corner of the piece and bending up the sides. The width of the piece is 24 inches and its length is 30 inches
When we cut a square of each corner of side x, the base of the box (after bending up the sides) will be (24-2x) and (30-2x), width and length respectively. The volume of the box is

Operating

To find the maximum value of V, we compute the first derivative and equate it to zero

Simplifying by 12

Completing squares


We have two values for x


The first value is not feasible because it will produce a negative width (24-2(13.58))=-6.16
We'll keep only the solution

The width is

The length is

And the height

The maximum volume is

Conductive current is the answer I d k