Average acceleration is
Change in Velocity/change in time
So you could then do Vf-Vi/Tf-Ti
Which would look like 13m/s-6m/s / 1s-0s
Which then is 7m/s/1s which means the acceleration is 7m/s^2
Answer:
Force = -1161.6 Newton
Explanation:
Given the following data;
Initial velocity, u = 44m/s
Distance ,s = 12.5cm to m = 12.5/100 = 0.125m
Mass = 0.15kg
To find the acceleration;
We would use the third equation of motion;
V ² = U² + 2as
0² = 44² + 2*a*0.125
0 = 1936 + 0.25a
0.25a = -1936
a = -1936/0.25
Acceleration, a = -7744m/s2
Force = mass * acceleration
Substituting into the equation, we have;
Force = 0.15 * (-7744)
Force = -1161.6 Newton
The value of its force is negative because the glove decreases the velocity of the ball.
Average speed = total distance / total time
total distance = 40 + 20 = 60km
total time taken = 10 + 5 = 15 minutes
Average speed = 60/15 = 4km/min
To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by

Where,
T = Tension
Linear density
Our data are given by
Tension , T = 70 N
Linear density , 
Amplitude , A = 7 cm = 0.07 m
Period , t = 0.35 s
Replacing our values,



Speed can also be expressed as

Re-arrange to find \lambda

Where,
f = Frequency,
Which is also described in function of the Period as,



Therefore replacing to find 


Therefore the wavelength of the waves created in the string is 3.49m