Blank 1: polar
The difference in electronegativity between N and H causes electrons to preferentially orbit N, making the bond polar.
Blank 2: trigonal pyramidal
There are four “things” attached to N - 3 H’s and 1 lone pair of electrons. The four things together are arranged into a tetrahedral formation. However, the lone pairs don’t actually contribute to the shape of the molecule per se; it’s only the actual atoms that do. The lone pair creates a bit of repulsion that pushes the 3 H’s down, creating a trigonal pyramidal shape (as opposed to a trigonal planar one).
Blank 3: polar
The molecule as a whole is also polar because the “things” around it, though arranged in a tetrahedral pattern, are not all the same. The side of the molecule with the lone pair is slightly negative, while the side with the 3 H’s is slightly positive due to the differences in electronegativity described above.
<span>Answer:
Connect the atoms with single bonds. The less electronegative is the phosphorous atom. Hence, the P atom is going to be the central atom. Recall that electronegativity decreases as we move away from the fluorine atom in the periodic chart.
Simple method for drawing Lewis dot structures</span>
Answer: Options (a) and (d) are the correct answer.
Explanation:
A catalyst is the substance which helps in increasing the rate of reaction.
Activation energy is the minimum amount of energy required by reactants to start the reaction. On addition of catalyst, the path of reaction changes because the energy barrier gap reduces and hence, the activation energy also decreases.
In the absence of catalyst, we need to increase the temperature so that reaction can occur quickly.
Whereas on addition of catalyst, there is no need to increase the temperature as the catalyst itself is sufficient to increase the rate of reaction. As a result, temperature should be lowered when there is addition of catalyst in the reaction.
Thus, we can conclude that catalysts can save money by essentially lowering the activation energy and temperature required.
Answer:
2H₂ + O₂ → 2H₂O
Explanation:
Chemical equation:
H₂ + O₂ → H₂O
Balance chemical equation:
2H₂ + O₂ → 2H₂O
Step 1:
H₂ + O₂ → H₂O
Left hand side Right hand side
H = 2 H = 2
O = 2 O = 1
Step 2:
H₂ + O₂ → 2H₂O
Left hand side Right hand side
H = 2 H = 4
O = 2 O = 2
Step 3:
2H₂ + O₂ → 2H₂O
Left hand side Right hand side
H = 4 H = 4
O = 2 O = 2
The balanced reaction is
Na2O + H2O --> 2NaOH
If 2.24 moles of sodium oxide react, that means 4.48 moles of NaOH is formed as it is a 1 to 2 stoichiometric relationship.
Now we multiply by the molar mass to get grams.
4.48 moles NaOH * (39.997 grams/1 mole) = 179.2 grams
Your answer is 179. grams.