Answer:
a) v = 88.54 m/s
b) vf = 26.4 m/s
Explanation:
Given that;
m = 1400.0 kg
a)
by using the energy conservation
loss in potential energy is equal to gain in kinetic energy
mg × ( 3200-2800) = 1/2 ×m×v²
so
1400 × 9.8 × 400 = 0.5 × 1400 × v²
5488000 = 700v²
v² = 5488000 / 700
v² = 7840
v = √7840
v = 88.54 m/s
b)
Work done by all forces is equal to change in KE
W_gravity + W_non - conservative = 1/2×m×(vf² - vi²)
we substitute
1400 × 9.8 × ( 3200-2800) - (5 × 10⁶) = 1/2 × 1400 × (vf² -0 )
488000 = 700 vf²
vf² = 488000 / 700
vf² = 697.1428
vf = √697.1428
vf = 26.4 m/s
The block's speed at the point where x=0.25A is v = 31.95 cm/s.
<h3>What is Spring constant?</h3>
The spring stiffness is quantified by the spring constant, or k. For various springs and materials, it varies. The stiffer the spring is and the harder it is to stretch, the bigger the spring constant.
question is incomplete, this is the remaining statement
What is the amplitude of the subsequent oscillations? And What is the block's speed at the point where x=0.25A?
x = Asin(wt)
v = Aw coswt
at t = 0
w = sqrt(k/m)
v = Aw
A = v/w
A = 7.17 cm
part b )
E = 1/2mv^2 + 1/2kx^2 = 1/2kA^2
mv^2 + k(1/4A)^2 = 1/2kA^2
mv^2 + kA^2/16 = kA^2
mv^2 = kA^2 - kA^2/16
mv^2 = 15kA^2/16
v^2 = 15/16 * (k/m) * A^2
v^2 = 15/16 *w^2A^2
v = sqrt(15/16) * wA
v = 31.95 cm/s
to learn more about spring constant go to -
brainly.com/question/23885190
#SPJ4
Radius of Earth is given as

now here the height from the surface of earth is same as that of radius

now here the acceleration due to gravity at this height is given as



now the force of gravity on the given object will be




<em>so the force of gravity on it is 1.225 N</em>
Newton's first law of motion. Because you fly over the handlebars and you land a few feet away on the ground. Your bike would stop immediately because of the unbalanced force.
Answer:
B. where tectonic plates meet
Explanation:
Most volcanoes occur near tectonic plate boundaries. For example, a large amount are found on the Ring of Firez connecting several plates.