Answer:
38.3 m/s
Explanation:
To find vertical component of initial velocity, you'd have to use sine ratio:

is vertical component of initial velocity and
is initial velocity given which is 50 m/s.
A stone is projected at an angle of 50 degrees so
= 50°. Substitute in the formula:

Therefore, the vertical component of initial velocity is approximately 38.3 m/s
(The picture is also attached for visual reference!)
Answer:
Net force is Zero.
Explanation:
If all forces that are equal and opposite are exerted on an object the resulting force will be Zero.
Answer: when a object gets slowed down, it's force is either going into friction and drag, if it's on the ground, and weight+drag+friction, if it's in the air.
Explanation:
Answer:
Explanation:
Let h be the height .
initial velocity in first case u = 0
final velocity v = 6 m /s
acceleration due to gravity g = 9.8 m /s²
v² = u² + 2 g h
6² = 0 + 2 x 9.8 x h
h = 1.837 m .
For second case u = 3 m /s
v² = u² + 2 gh
= 3² + 2 x 1.837 x 9.8
= 9 + 36
= 45 m
v = 6.7 m /s
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.
