1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helga [31]
3 years ago
14

I WILL GIVE BRAINLIEST

Mathematics
1 answer:
masha68 [24]3 years ago
8 0

Answer:

Part A = 64 feet

Part B = 79 feet

Step-by-step explanation:

Part A

10 × 2 = 20 = Diameter

Formula is C = π × diameter

20 × π = 62.8318530718 feet = 64 feet

Part B

25 × 2 = 50

Same formula

50 × π = 157.079632679 feet

157.079632679 ÷ 2 = 78.5398163395 feet = 79 feet

divide by 2 because it is a semi circle

Hope his helped :)

You might be interested in
In a study of government financial aid for college​ students, it becomes necessary to estimate the percentage of​ full-time coll
algol13

Answer:

(a) The sample size required is 2401.

(b) The sample size required is 2377.

(c) Yes, on increasing the proportion value the sample size decreased.

Step-by-step explanation:

The confidence interval for population proportion <em>p</em> is:

CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hatp(1-\hat p)}{n}}

The margin of error in this interval is:

MOE=z_{\alpha/2}\sqrt{\frac{\hatp(1-\hat p)}{n}}

The information provided is:

MOE = 0.02

z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96

(a)

Assume that the proportion value is 0.50.

Compute the value of <em>n</em> as follows:

MOE=z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}\\0.02=1.96\times \sqrt{\frac{0.50(1-0.50)}{n}}\\n=\frac{1.96^{2}\times0.50(1-0.50)}{0.02^{2}}\\=2401

Thus, the sample size required is 2401.

(b)

Given that the proportion value is 0.55.

Compute the value of <em>n</em> as follows:

MOE=z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}\\0.02=1.96\times \sqrt{\frac{0.55(1-0.55)}{n}}\\n=\frac{1.96^{2}\times0.55(1-0.55)}{0.02^{2}}\\=2376.99\\\approx2377

Thus, the sample size required is 2377.

(c)

On increasing the proportion value the sample size decreased.

8 0
4 years ago
Which expression represents the number 13,809 written in expanded form?
Brums [2.3K]
The answer is D and not b because it’s not 90 it’s 09
4 0
4 years ago
What is Negative 2 (3 x + 12 y minus 5 minus 17 x minus 16 y + 4) simplified? Negative 40 x + 8 y + 2 28 x + 8 y + 2 28 x + 6 y
Ede4ka [16]

Answer:

Step-by-step explanation:

-2(3x + 12y - 5 - 17x - 16y + 4) =.....combine like terms

-2(-14x - 4y - 1) =

28x + 8y + 2 <====

4 0
4 years ago
Read 2 more answers
Which is the correct calculation of the y-coordinate of point A? 0 (0 - 0)2 + (1 - y2 = 2 O (0 - 1)² + (0- y2 = 22 (0-0)² + (1 -
dimaraw [331]

Answer:

The y-coordinate of point A is \sqrt{3}.  

Step-by-step explanation:

The equation of the circle is represented by the following expression:

(x-h)^{2}+(y-k)^{2} = r^{2} (1)

Where:

x - Independent variable.

y - Dependent variable.

h, k - Coordinates of the center of the circle.

r - Radius of the circle.

If we know that h = 0, k = 0 and r = 2, then the equation of the circle is:

x^{2} + y^{2} = 4 (1b)

Then, we clear y within (1b):

y^{2} = 4 - x^{2}

y = \pm \sqrt{4-x^{2}} (2)

If we know that x = 1, then the y-coordinate of point A is:

y = \sqrt{4-1^{2}}

y = \sqrt{3}

The y-coordinate of point A is \sqrt{3}.  

4 0
3 years ago
The time it takes for a planet to complete its orbit around a particular star is called the? planet's sidereal year. The siderea
BartSMP [9]

Answer:

(a) See below

(b) r = 0.9879  

(c) y = -12.629 + 0.0654x

(d) See below

(e) No.

Step-by-step explanation:

(a) Plot the data

I used Excel to plot your data and got the graph in Fig 1 below.

(b) Correlation coefficient

One formula for the correlation coefficient is  

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}

The calculation is not difficult, but it is tedious.

(i) Calculate the intermediate numbers

We can display them in a table.

<u>    x   </u>    <u>      y     </u>   <u>       xy     </u>    <u>              x²    </u>   <u>       y²    </u>

   36       0.22              7.92               1296           0.05

   67        0.62            42.21              4489           0.40

   93         1.00            93.00           20164           3.46

 433        11.8          5699.4          233289        139.24

 887      29.3         25989.1          786769       858.49

1785      82.0        146370          3186225      6724

2797     163.0         455911         7823209    26569

<u>3675 </u>  <u> 248.0  </u>    <u>   911400      </u>  <u>13505625</u>   <u> 61504        </u>

9965   537.81     1545776.75  25569715   95799.63

(ii) Calculate the correlation coefficient

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{9\times 1545776.75 - 9965\times 537.81}{\sqrt{[9\times 25569715 -9965^{2}][9\times 95799.63 - 537.81^{2}]}} \approx \mathbf{0.9879}

(c) Regression line

The equation for the regression line is

y = a + bx where

a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}}\\\\= \dfrac{537.81\times 25569715 - 9965 \times 1545776.75}{9\times 25569715 - 9965^{2}} \approx \mathbf{-12.629}\\\\b = \dfrac{n \sum xy  - \sum x \sum y}{n\sum x^{2}- \left (\sum x\right )^{2}} -  \dfrac{9\times 1545776.75  - 9965 \times 537.81}{9\times 25569715 - 9965^{2}} \approx\mathbf{0.0654}\\\\\\\text{The equation for the regression line is $\large \boxed{\mathbf{y = -12.629 + 0.0654x}}$}

(d) Residuals

Insert the values of x into the regression equation to get the estimated values of y.

Then take the difference between the actual and estimated values to get the residuals.

<u>    x    </u>   <u>      y     </u>   <u>Estimated</u>   <u>Residual </u>

    36        0.22        -10                 10

    67        0.62          -8                  9

    93        1.00           -7                  8

   142        1.86           -3                  5

  433       11.8             19               -  7

  887     29.3             45               -16  

 1785     82.0            104              -22

2797    163.0            170               -  7

3675   248.0            228               20

(e) Suitability of regression line

A linear model would have the residuals scattered randomly above and below a horizontal line.

Instead, they appear to lie along a parabola (Fig. 2).

This suggests that linear regression is not a good model for the data.

4 0
3 years ago
Other questions:
  • The longest runway at one of chicagos airports is 13,001 feet long. The longest runway at one of new yorks airports is 2.76 mile
    9·1 answer
  • Please help me ASAP!!!
    5·1 answer
  • A quadrilateral can have four obtuse angles.<br> True<br> False
    12·1 answer
  • 258 kiloliters is how many liters
    12·1 answer
  • 2x + 5 = 4 (5/4 - 1/2 x)
    8·1 answer
  • 34X3+89-7=<br><br> WHO WANTS TO GET HAC KED
    7·2 answers
  • Calcula la longitud de un arco en un sector circular cuyo ángulo central mide 2grados y su radio mide 36000cm
    5·1 answer
  • Can someone help I’ll give brainliest!
    9·1 answer
  • Two poles of lengths 10 ft and 15 ft are set up vertically with bases on horizontal ground 12 ft apart. Find the distance betwee
    8·2 answers
  • System of Equations- pls help with the following problem
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!