Delta T= T final - T initial
Tfinal= -101.1 °C
Tinitial= -0.5 °C
•Delta T = -101.1°C - (-0.5°C)
=100.6°C
Kelvin= °C + 273
= -100.6 + 273
= 172.4 Kelvin
Answer:
So 1 mole
Explanation:
PV = nRT
P = Pressure atm
V = Volume L
n = Moles
R = 0.08206 L·atm·mol−1·K−1.
T = Temperature K
standard temperature = 273K
standard pressure = 1 atm
22.4 liters of oxygen
Ok so we have
V = 22.4
P = 1 atm
PV = nRT
n = PV/RT
n = 22.4/(0.08206 x 273)
n = 22.4/22.40
n = 1 mole
Answer:
237.8L of water would need to be added.
Explanation:
The first thing to do is to identify that the equation to be used is M1V1=M2V2. (This equation works because it turns everything into moles which can then be compared).
Then figure out what information you have and what is being found. In this case:
M1 = 54.7 M
V1 = 1092 mL = 1.092 L
M2 = 0.25 M
V2 = unknown
Then solve the equation for whatever you are trying to find.
M1V1=M2V2
V2=M1V1/M2
Now you need to plug everything in.
V2=(54.7M*1.091L)/0.25M
V2=238.93L
That means that the solution needs a volume of 238.7L to gain a molarity of 0.25M but the starting solution already had a volume of 1.092 L meaning that to find the amount of solvent that needs to be added you just subtract the starting volume by the volume that the solution needs to be.
238.93L - 1.091L = 237.8L
Therefore the answer is that 237.8L needs to be added to a 1.092L 54.7M NaCl solution to make the concentration 0.25M.
I hope this helps. Let me know if anything is unclear.
The correct answer is 3.
A dynamic phase equilibrium is when a reversible reaction no longer changes its ratio of reactants to products. However, substances continue to move between the chemicals at an equal rate, which means the net change is 0. This is known as a steady state.
Explanation:
c . produces bile is not the function of slaiva