Explanation:
local winds are considered breezes while global winds produce mostly storms
<u>Ionic Bond</u> is formed when the electronegativity difference is 0.4 > 2.0. Electronegativity is a term that can be defined as a tendency of an atom to attract electron towards its own self.
Explanation:
Electronegativity is a term that can be defined as a tendency of an atom to attract electron towards its own self.
An electronegativity of an atom is affected by
- The atomic number of the atom
- Secondly by the distance at which the valence electron are residing from the nucleus
1. In case the electronegativity difference (which is denoted by ΔEN) is less than 0.5 then the bond formed is known as N<u>onpolar covalent.
</u>
2. In case the ΔEN is in between 0.5 and 1.6, the bond formed is referred to as the<u> Polar covalent
</u>
3. In case the ΔEN is more /greater than 2.0, then the bond formed is referred to as<u> Ionic Bond</u>
<u>2 Examples of Ionic bonds</u>
- The formation of sodium fluoride, NaF, from a sodium atom and a fluorine atom is an example of Ionic bond formation.
- Another example is the formation of NaCl from sodium (Na),which is a metal, and chloride (Cl), which is a nonmetal
The mass of the piece of wood is 35.58 g.
Joule = M × T × C
Where, M = mass
T = change in temperature(42C-23C=19 C)
C = specific heat capacity = 1.716 joules/gram
Substituting the values in the equation,
1160 = M × 19 × 1.716
M = 1160/32.604 = 35.58 g
Therefore, the mass of the piece of wood = 35.58 g
<h3>What is meant by specific heat capacity?</h3>
A material's specific heat capacity, which is defined as its heat capacity divided by its mass, determines how much energy is required to increase a gram's temperature by one degree Celsius (or one Kelvin)
<h3>What is mass?</h3>
Mass is the quantity of matter in a physical body.
To learn more about specific heat capacity visit:
brainly.com/question/1747943
#SPJ4
Answer:
Charge= -2.
Gains two electron into the 4p^4 to become 4p^6.
Explanation:
The element in the periodic table/chart that matches with the valence electron configuration is Selenium with full electron configuration of [Ar] 3d^10 4s^2 4P^4 which is a non-metal that is found in group 4 of the periodic table/chart.
Selenium can receive 2 more electrons on the 4p^4 to give a -2(minus 2) ion that is Se^2-.
Selenium can also loose 2 electron from 4s^2 to give a +2 ion that is Se^2+.
Selenium can also loose 2 electrons from 4s^2 and 2 electrons from 4p^4 to form Se^4+.
Selenium can also loose 2 electrons from 4s^2 and 4 electrons from 4p^4 to form Se^6+.
Thus, in order to form a monatomic ion with a charge(we will be making use of the most stable one). Thus, it will gain two more electron since this is easier to become 4s^2 4p^6.