Answer:
L = 8694 Kg.m²/s
Explanation:
r = 270 ĵ m
v = 14 î m/s
m = 2.3 kg
θ = 90º
L = ?
We can apply the equation
L = m*v*r*Sin θ
L = (2.3 kg)*(14 m/s)*(270 m)*Sin 90º = 8694 Kg.m²/s
Answer:
Option (c) is correct.
Explanation:
Acceleration of an object is given by the formula as follows :

Where
u and v are initial and final velocity
t is time
(v-u) is also called the change in velocity
So, the acceleration of an object is equal to the rate of change of velocity. Hence, the correct option is (c) " Change in its velocity divided by the change in time".
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.
The correct answer to this question is this one: B. 5.89 feet
<span>The area of a circular trampoline is 108.94 square feet. The radius of the trampoline is 5.89 feet.
</span>
For a circle,
A = (pi)r^2
108.94 ft^2 = (pi)r^2
r^2 = (108.94 ft^2)/(pi)
r = sqrt(108.94/pi) ft
r = 5. 89 ft