Answer:
A. It is always a positive force
Explanation:
Hooke's law describes the relation between an applied force and extension ability of an elastic material. The law states that provided the elastic limit, e, of a material is not exceeded, the force, F, applied is proportional to the extension, x, provided temperature is constant.
i.e F = - kx
where k is the constant of proportionality, and the minus sign implies that the force is a restoring force.
The applied force can either be compressing or stretching force.
Answer:
20 N/m
Explanation:
From the question,
The ball-point pen obays hook's law.
From hook's law,
F = ke............................ Equation 1
Where F = Force, k = spring constant, e = compression.
Make k the subject of the equation
k = F/e........................ Equation 2
Given: F = 0.1 N, e = 0.005 m.
Substitute these values into equation 2
k = 0.1/0.005
k = 20 N/m.
Hence the spring constant of the tiny spring is 20 N/m
Answer:
t = 13.7 s or t = 14 s with proper significant figures
Explanation:
The initial speed is 0 m/s since the car starts from rest, acceleration is 5.5 m/s2 and distance is 523 m.
Since we have initial speed, acceleration and distance we can use the following formula to find the time. We can now use algebra to work out our answer.
d = vt +
at²
523 = (0)t + (
)(5.5)t²
523 = 2.8t²
186.8 = t²
13.7 s = t
(t = 14 s with proper significant figures)
The correct answer would be the sun
The kinetic energy of the object is 392 Joules.