Explanation:
We know that the sky appears to us like a sphere called as celestial sphere which appears to rotate around an imaginary axis because of Earth's rotation. Since the axis cuts the celestial sphere at celestial poles all the object seems to circle around the celestial poles.
Condition 1: The stars rise and set perpendicular to the horizon
The observer is at the equator
Condition 2: The stars circle the sky parallel to the horizon
The observer is at the Pole of the Earth
Condition 3: The celestial equator passes through the zenith
The observer is at the equator
Condition 4: In the course of a year, all stars are visible
The observer is at the equator
Condition 5: The Sun rises on March 21 and does not set until September 21 (ideally)
The observer is at North Pole
Answer:
The first one (60%)
Explanation:
The first one converts 15% more energy than the other one. Therefore, it is more efficient.
Hope this helps!
Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days
From the calculation, the speed of sound at 10 K is 63.5 m/s.
<h3>What is the speed of sound?</h3>
We know that the speed of sound is directly proportional to the temperature of the body thus we can write;
V1/V2 = √T1/T2
Then;
T1 = 0 degrees or 273 K
T2 = 10 K
V1 = 330 m/s
V2 = ?
330/T2 = √273/10
330/T2 = 5.2
330 = 5.2T2
V2 = 330/5.2
V2 = 63.5 m/s
Learn more about speed of sound:brainly.com/question/15381147
#SPJ1
In sound waves, the particles move in the same direction as the wave is moving, so you wouldn't be able to see them like ripples in the air, instead they make areas in the air where the particles are more squished together, and areas where the particles are further apart.