1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
3 years ago
10

An automotive air conditioner produces a 1-kW cooling effect while consuming 0.75 kW of power. What is the rate at which heat is

rejected from this air conditioner
Physics
1 answer:
Ipatiy [6.2K]3 years ago
8 0

Answer:

The rejected by the air conditioning system is 1.75 kilowatts.

Explanation:

A air conditioning system is a refrigeration cycle, whose receives heat from cold reservoir with the help of power input before releasing it to hot reservoir. The First Law of Thermodynamics describes the model:

\dot Q_{L} + \dot W - \dot Q_{H} = 0

Where:

\dot Q_{L} - Heat rate from cold reservoir, measured in kilowatts.

\dot Q_{H} - Heat rate liberated to the hot reservoir, measured in kilowatts.

\dot W - Power input, measured in kilowatts.

The heat rejected is now cleared:

\dot Q_{H} = \dot Q_{L} + \dot W

If \dot Q_{L} = 1\,kW and \dot W = 0.75\,kW, then:

\dot Q_{H} = 1\,kW + 0.75\,kW

\dot Q_{H} = 1.75\,kW

The rejected by the air conditioning system is 1.75 kilowatts.

You might be interested in
A boy is pedaling his bicycle at a velocity of 0.20km/ minute . How far will he travel in 2.5 hours
fredd [130]
30km. 24 the first two hours and 6 the half hour
4 0
3 years ago
Read 2 more answers
A mason is shot with a constant speed of 7.5 x 10²m/sinto a region, when an electric field produces acceleration on the mason of
nadya68 [22]

Answer:

Distance, d = 0.1 m

It is given that,

Initial velocity of meson,

Finally, the meson is coming to rest v = 0

Acceleration of the meson,  (opposite to initial velocity)

Using third equation of motion as :

s is the distance the meson travelled before coming to rest.

So,

 

s = 0.1 m

The meson will cover the distance of 0.1 m before coming to rest. Hence, this is the required solution.  

5 0
3 years ago
Starting at (0,0) an object travels 36 meters north and then it covers 20 meters east. What is
Svetradugi [14.3K]

Answer:

Explanation:

Using the pythagoras theorem, the displacement is expressed as;

d² = x²+y²

y = 36m (north)

x = 20m east

Substitute;

d² = 36²+20²

d² = 1296+400

d² = 1696

d = √1696

d = 41.18m

For the direction;

theta = tan^-1(y/x)

theta = tan^-1(36/20)

theta = tan^-1(1.8)

theta = 60.95°

Hence the magnitude is 41.18m and the direction is 60.95°

8 0
3 years ago
What requirement must a force acting on a object satisfy in order for the object to undergo simple harmonic motion?
viktelen [127]

Answer:

Simple harmonic motion is the movement of a body or an object to and from an equilibrium position. In a simple harmonic motion, the maximum displacement (also called the amplitude) on one side of the equilibrium position is equal to the maximum displacement.

The force acting on an object must satisfy Hooke's law for the object to undergo simple harmonic motion. The law states that the force must be directed always towards the equilibrium position and also directly proportional to the distance from this position.

6 0
3 years ago
A mortar is like a small cannon that launches shells at steep angles. A mortar crew is positioned near the top of a steep hill.
Elena-2011 [213]

1) Distance down the hill: 1752 ft (534 m)

2) Time of flight of the shell: 12.9 s

3) Final speed: 326.8 ft/s (99.6 m/s)

Explanation:

1)

The motion of the shell is a projectile motion, so we  can analyze separately its vertical motion and its horizontal motion.

The vertical motion of the shell is a uniformly accelerated motion, so the vertical position is given by the following equation:

y=(u sin \theta)t-\frac{1}{2}gt^2 (1)

where:

u sin \theta is the initial vertical velocity of the shell, with u=156 ft/s and \theta=49.0^{\circ}

g=32 ft/s^2 is the acceleration of gravity

At the same time, the horizontal motion of the shell is a uniform motion, so the horizontal position of the shell at time t is given by the equation

x=(ucos \theta)t

where u cos \theta is the initial horizontal velocity of the shell.

We can re-write this last equation as

t=\frac{x}{u cos \theta} (1b)

And substituting into (1),

y=xtan\theta -\frac{1}{2}gt^2 (2)

where we have choosen the top of the hill (starting position of the shell) as origin (0,0).

We also know that the hill goes down with a slope of \alpha=-41.0^{\circ} from the horizontal, so we can write the position (x,y) of the hill as

y=x tan \alpha (3)

Therefore, the shell hits the slope of the hill when they have same x and y coordinates, so when (2)=(3):

xtan\alpha = xtan \theta - \frac{1}{2}gt^2

Substituting (1b) into this equation,

xtan \alpha = x tan \theta - \frac{1}{2}g(\frac{x}{ucos \theta})^2\\x (tan \theta - tan \alpha)-\frac{g}{2u^2 cos^2 \theta} x^2=0\\x(tan \theta - tan \alpha-\frac{gx}{2u^2 cos^2 \theta})=0

Which has 2 solutions:

x = 0 (origin)

and

tan \theta - tan \alpha=\frac{gx}{2u^2 cos^2 \theta}=0\\x=(tan \theta - tan \alpha) \frac{2u^2 cos^2\theta}{g}=1322 ft

So, the distance d down the hill at which the shell strikes the hill is

d=\frac{x}{cos \alpha}=\frac{1322}{cos(-41.0^{\circ})}=1752 ft=534 m

2)

In order to find how long the mortar shell remain in the air, we can use the equation:

t=\frac{x}{u cos \theta}

where:

x = 1322 ft is the final position of the shell when it strikes the hill

u=156 ft/s is the initial velocity of the shell

\theta=49.0^{\circ} is the angle of projection of the shell

Substituting these values into the equation, we find the time of flight of the shell:

t=\frac{1322}{(156)(cos 49^{\circ})}=12.9 s

3)

In order to find the final speed of the shell, we have to compute its horizontal and vertical velocity first.

The horizontal component of the velocity is constant and it is

v_x = u cos \theta =(156)(cos 49^{\circ})=102.3 ft/s

Instead, the vertical component of the velocity is given by

v_y=usin \theta -gt

And substituting at t = 12.9 s (time at which the shell strikes the hill),

v_y=(156)(cos 49^{\circ})-(32)(12.9)=-310.4ft/s

Therefore, the  final speed of the shell is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(102.3)^2+(-310.4)^2}=326.8 ft/s=99.6 m/s

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • Two meanings of identifying are one particular moment, and a quantity or interval
    12·2 answers
  • 10. when creating a cardiovascular fitness routine which program would be appropriate?
    12·1 answer
  • Which phrase is the best definition of matter
    6·1 answer
  • On a hot day, the temperature of an 82923-L swimming pool increases by 1.6∘C. What is the net heat transfer during this heating?
    7·1 answer
  • Explain the relationship between the two reactions.
    10·1 answer
  • How will the electrostatic force between two electric charges change if one charge is doubled and the second charge is tripled?
    13·1 answer
  • Can anybody answer this its a science question NO LINKS !!!!
    5·1 answer
  • What is the water cycle ?
    11·2 answers
  • A loaf of bread has a mass of 2000g and a volume of 500 cm3. what is the density of the bread
    6·1 answer
  • 26 Select the correct answer. What happens when two polarizers are placed in a straight line, one behind the other? They allow l
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!