Answer:
a) r = 6122 m and b) v = 32.5 m / s
Explanation:
a) The train in the curve is subject to centripetal acceleration
a = v2 / r
Where v is The speed and r the radius of the curve
They indicate that the maximum acceleration of the person is 0.060g,
a = 0.060 g
a = 0.060 9.8
a = 0.588 m /s²
Let's calculate the radius
v = 216 km / h (1000m / 1km) (1 h / 3600 s =
v = 60 m / s
r = v² / a
r = 60² /0.588
r = 6122 m
b) Let's calculate the speed, for a radius curve 1.80 km = 1800 m
v = √a r
v = √( 0.588 1800)
v = 32.5 m / s
Complete Question
The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .
What eyepiece focal length will give the microscope an overall angular magnification of 300?
Answer:
The eyepiece focal length is
Explanation:
From the question we are told that
The focal length is 
This negative sign shows the the microscope is diverging light
The angular magnification is 
The distance between the objective and the eyepieces lenses is 
Generally the magnification is mathematically represented as
![m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ]](https://tex.z-dn.net/?f=m%20%20%3D%20%20%5B%5Cfrac%7BZ%20-%20f_e%20%7D%7Bf_e%7D%5D%20%5B%5Cfrac%7B0.25%7D%7Bf_0%7D%20%5D)
Where
is the eyepiece focal length of the microscope
Now making
the subject of the formula
![f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7BZ%7D%7B1%20-%20%5B%5Cfrac%7BM%20%20%2A%20%20f_o%20%7D%7B0.25%7D%5D%20%7D)
substituting values
![f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7B%200.19%20%7D%7B1%20-%20%5B%5Cfrac%7B300%20%20%2A%20%20-0.0055%20%7D%7B0.25%7D%5D%20%7D)
Answer:
it comes from your knowledge and the information you have to get the reason why that is the answer so you are putting together things that you already know what the new information you have
<span>Compressional forces are the stress that would cause the effect called "Folding".</span>
Answer:
The center of the Milky Way most likely contains a supermassive black hole.
Explanation:
Because it is an eleptical galaxy, it has a little rotation to it but not enough to flatten out so the center will contain a supermassive black hole.