Answer:
27.1 m/s
Explanation:
Given that at a race car driving event, a staff member notices that the skid marks left by the race car are 9.06 m long. The very experienced staff member knows that the deceleration of a car when skidding is -40.52 m/s2.
Using third equation of motion,
V^2 = U^2 + 2aS
Since the car is decelerating, the final velocity V = 0
Substitute all the parameter into the equation above,
0 = U^2 - 2 * 40.52 * 9.06
U^2 = 734.22
U = 
U = 27.096
U = 27.1 m/s approximately
Therefore, the staff member can estimate for the original speed of the race car to be 27.1 m/s if it came to a stop during the skid
You should not go into the left side of the roadway when within 100 feet of the crossing. Moreover, you should also turn on your turn signal when within 100 of a turn. These precautions prevent accidents as it makes clear to other drivers what your intentions are and drivers making turns are not endangered.
The relationship between frequency and wavelength for an electromagnetic wave is

where
f is the frequency

is the wavelength

is the speed of light.
For the light in our problem, the frequency is

, so its wavelength is (re-arranging the previous formula)
Answer:
The force required to move the quarterback with linebacker is <u>1215 N</u>
Explanation:



Using Newton's second law, it is established that F = Ma
Where F is net force acting on the system, a is the acceleration and M is mass of the two object 
Now consider both
as a system, so net force acting on the system is 
Substitute the given values in the above formula,


Force = 1215 N
<u>1215 N </u>is the force required to move the quarterback with linebacker.
Length L = 25 cm = 0.25 m, B = 600 G = 0.06 T ( 1G = 0.0001 T)
emf= 10 V
Solution:
emf = vBL
v= emf / BL
5 = emf/ (0.25 T× 0.25 m)
emf = 0.3125 v
Magnetic field
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field.
To learn more about the magnetic field refer here:
brainly.com/question/23096032
#SPJ4