Answer:
I don't know what you mean about which changes occurred in this process but if its why the dough starts rising then its caused by the carbon dioxide in baking soda and yeast which is a fungus
m=23.8kg a=8.97m/s^2 Fnet=? Fnet=ma=(23.8kg)(8.97m/s^2)=213.486N
Answer:
Explanation:
Initial moment of inertia of the earth I₁ = 2/5 MR² , M is mss of the earth and R is the radius . If ice melts , it forms an equivalent shell of mass 2.3 x 10¹⁹ Kg
Final moment of inertia I₂ = 2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²
For change in period of rotation we shall apply conservation of angular momentum law
I₁ ω₁ = I₂ ω₂ , ω₁ and ω₂ are angular velocities initially and finally .
I₁ / I₂ = ω₂ / ω₁
I₁ / I₂ = T₁ / T₂ , T₁ , T₂ are time period initially and finally .
T₂ / T₁ = I₂ / I₁
(2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²) / 2/5 MR²
1 + 5 / 3 x 2.3 x 10¹⁹ / M
= 1 + 5 / 3 x 2.3 x 10¹⁹ / 5.97 x 10²⁴
= 1 + .0000064
T₂ = 24 (1 + .0000064)
= 24 hours + .55 s
change in length of the day = .55 s .
Answer:
Force, 
Explanation:
Given that,
Mass of the bullet, m = 4.79 g = 0.00479 kg
Initial speed of the bullet, u = 642.3 m/s
Distance, d = 4.35 cm = 0.0435 m
To find,
The magnitude of force required to stop the bullet.
Solution,
The work energy theorem states that the work done is equal to the change in its kinetic energy. Its expression is given by :

Finally, it stops, v = 0



F = -22713.92 N

So, the magnitude of the force that stops the bullet is 
Answer:
just before landing the ground
Explanation:
Let the velocity of projection is u and the angle of projection is 30°.
Let T is the time of flight and R is the horizontal distance traveled. As there is no force acting in horizontal direction, so the horizontal velocity remains constant. Let the particle hits the ground with velocity v.
initial horizontal component of velocity, ux = u Cos 30
initial vertical component of velocity, uy = u Sin 30
Time of flight is given by

Final horizontal component of velocity, vx = ux = u Cos 30
Let vy is teh final vertical component of velocity.
Use first equation of motion
vy = uy - gT


vy = - u Sin 30
The magnitude of final velocity is given by


v = u
Thus, the velocity is same as it just reaches the ground.