r₁ = distance of point A from charge q₁ = 0.13 m
r₂ = distance of point A from charge q₂ = 0.24 m
r₃ = distance of point A from charge q₃ = 0.13 m
Electric field by charge q₁ at A is given as
E₁ = k q₁ /r₁² = (9 x 10⁹) (2.30 x 10⁻¹²)/(0.13)² = 1.225 N/C towards right
Electric field by charge q₂ at A is given as
E₂ = k q₂ /r₂² = (9 x 10⁹) (4.50 x 10⁻¹²)/(0.24)² = 0.703 N/C towards left
Since the electric field in left direction is smaller, hence the electric field by the third charge must be in left direction
Electric field at A will be zero when
E₁ = E₂ + E₃
1.225 = 0.703 + E₃
E₃ = 0.522 N/C
Electric field by charge "q₃" is given as
E₃ = k q₃ /r₃²
0.522 = (9 x 10⁹) q₃/(0.13)²
q₃ = 0.980 x 10⁻¹² C = 0.980 pC
30 km/h * 17 h = 30*17 km/h *h
= 510 km
Answer: for 1 is number 1
and for 2 is 3
Explanation:
When an object in simple harmonic motion is at its maximum displacement, its <u>acceleration</u> is also at a maximum.
<u><em>Reason</em></u><em>: The speed is zero when the simple harmonic motion is at its maximum displacement, however, the acceleration is the rate of change of velocity. The velocity reverses the direction at that point therefore its rate of change is maximum at that moment. thus the acceleration is at its maximum at this point</em>
<em />
Hope that helps!