Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>
Answer: A. Diethyl ether has a very low miscibility in wate
The fact that the diethyl ether is miscible or not in water <u>does not imply a ris</u>k for the person who is working with this reagent in the laboratory.
However, the fact that diethyl ether forms explosive peroxides and that it is highly flammable implies that there is a risk of explosion when exposed to air and sunlight. On the other hand, as option C mentions, if a person inhales a large quantity of this reagent, they may lose consciousness and suffer some injury when fainting, due to the powerful anesthetic effect of this reagent.<u> In conclusion, options B, C and D are statements that imply safety problems associated with the use of diethyl ether in the laboratory, while option A does not imply it.</u>
Suppose protons were emitted rather than electrons then it affects the experiment as the mean velocity of proton will be less then mean velocity electron .
The mass of proton is greater than the mass of electrons but charge of electron is equal to the charge of proton . So , due to difference in the mass of electron and proton there will be some effects. We can conserve the electric energy which is equal to the qe .
The kinetic energy = 1/2
Now changing the electric potential energy into kinetic energy
v = √2qe/m
The mean velocity of proton will be less then mean velocity electron .
To learn more about proton
brainly.com/question/1252435
#SPJ4