Answer:
A) 22.4L
Explanation:
we know, ideal gas law states
PV=nRT
V=nRT/P
At STP,
T= 273.15K P=1atm R=0.082L.atm/mol/K n=1 mole
V=(1*0.082*273.15)/ 1
V=22.4L
Answer:
A) The effect on the net reaction catalyzed by glyceraldehyde is that
The 1-arsen0, 3-phosphoglycerate will decompose without enzymes hence no ATP will be formed in the reaction ( phosphoglycerate Kinase )
B) There will be no conversion of ADP to ATP from the conversion of glucose to pyruvate hence No balanced overall equation can be derived
C ) Arsenate is very toxic to most organisms and it is used mostly regarded as poisons during the formation of glycolysis, it forms 1-arsen0, 3-phosphoglycerate which hinders the formation of ATP because it is unstable and will hydrolyze quickly, this will also lead to the reduction in oxygen in cells thereby leading to the death of cells
Explanation:
A) The effect on the net reaction catalyzed by glyceraldehyde is that
The 1-arsen0, 3-phosphoglycerate will decompose without enzymes hence no ATP will be formed in the reaction ( phosphoglycerate Kinase )
B) There will be no conversion of ADP to ATP from the conversion of glucose to pyruvate hence No balanced overall equation can be derived
C ) Arsenate is very toxic to most organisms and it is mostly regarded as poisons during the formation of glycolysis, it forms 1-arsen0, 3-phosphoglycerate which hinders the formation of ATP because it is unstable and will hydrolyze quickly, this will also lead to the reduction in oxygen in cells thereby leading to the death of cells
Answer:
Q = 90,000 J
Explanation:
Given data:
Mass skillet = 2000 g
Specific heat capacity = 0.450 J/g.°C
Energy required to raise temperature = ?
Initial temperature = 25°C
Final temperature = 125°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 125°C - 25°C
ΔT = 100°C
Q = 2000 g × 0.450 J/g.°C × 100°C
Q = 90,000 J
Answer:
18.9 moles
Explanation:
We have the following data:
V = 50 L
P = 12.4 atm
T= 127°C + 273 = 400 K
R = 0.082 L.atm/K.mol (it is the gas constant)
We use the ideal gas equation to calculate the number of moles n of the gas:
PV = nRT
⇒ n = PV/RT = (12.4 atm x 50 L)/(0.082 L.atm/K.mol x 400 K) = 18.9 mol