1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
4 years ago
14

Choose the correct total number of electron domains (bonding and nonbonding) about a central atom if the angle(s) between the el

ectron domains are all about 120 degrees. a) The central atom has 2 electron domains. b) The central atom has 5 electron domains. c) The central atom has 6 electron domains. d) The central atom has 3 electron domains. e) The central atom has 4 electron domains.
Chemistry
1 answer:
slamgirl [31]4 years ago
5 0

Answer:

The central atom has 3 electron domains.

Explanation:

According to the Valence Shell electron pair repulsion theory (VSEPR) put forward by Gillespie and Nyholm in 1957, the shape of a molecule is determined by repulsion between all the electron pairs (electron domains) present in the valence shell.

The electron pairs or electron domains are known to position themselves as far apart in space as possible in order to minimize repulsions.

Hence, when the central atom of a molecule contains three electron domains, they are positioned at an angle of 120° from each other to minimize repulsions. Hence the answer.

You might be interested in
Consider the balanced equation:
Mamont248 [21]
The answer is 6 moles of water will be produced.
3 0
3 years ago
Read 2 more answers
A chemist has a block of lead metal (density is 11.3 g/mL). The block weighs 2.10g. What is the volume if the lead block in mL?
mezya [45]

The volume of a block of lead metal that has a density of 11.3g/mL and weighs 2.10g is 0.186mL.

<h3>How to calculate volume?</h3>

The volume of a substance can be calculated by dividing the mass of the substance by its density. That is;

Volume = mass ÷ density

According to this question, a chemist has a block of lead metal (density is 11.3 g/mL). The block weighs 2.10g.

Volume = 2.10g ÷ 11.3g/mL

Volume = 0.186mL

Therefore, the volume of a block of lead metal that has a density of 11.3g/mL and weighs 2.10g is 0.186mL.

Learn more about volume at: brainly.com/question/18670654

#SPJ1

3 0
1 year ago
You need to determine the specific gravity of a sample. After putting the sample on a lab scale, you know it has a mass of 85 gr
BlackZzzverrR [31]

Answer:

Specific gravity of the sample = 8.947

Explanation:

Specific gravity of a substance is defined as the density of that substance divided by the density of water.

Density of water = 1000g/l

Density of substance = mass/volume

= 85/9.5 x 10^-3

= 8947.37 g/l

SG = 8947.37/1000

= 8.947

3 0
3 years ago
Explaian why pressure decreases but temperature varies as altitude increases
prohojiy [21]

Answer:As you increase your altitude, the air pressure decreases because there is less air above pressing down. Therefore that air temperature also decreases proportionately.

Explanation:

please mark as brainliest

5 0
3 years ago
I need help with this for chemistry. I don’t understand now to do this.
alina1380 [7]

The ipR.O.B.O.T states

 aA+bB⇌ cC+dD  

the equilibrium constant is written as follows:

Kc=[C]c[D]d[A]a[B]b  

The ICE Table

The easiest approach for calculating equilibrium concentrations is to use an ICE Table, which is an organized method to track which quantities are known and which need to be calculated. ICE stands for:

"I" is for the "initial" concentration or the initial amount

"C" is for the "change" in concentration or change in the amount from the initial state to equilibrium

"E" is for the "equilibrium" concentration or amount and represents the expression for the amounts at equilibrium.

For the gaseous hydrogenation reaction below, what is the concentration for each substance at equilibrium?

C2H4(g)+H2(g)⇌C2H6(g)(1)

with  Kc=0.98  characterized from previous experiments and with the following initial concentrations:

[C2H4]0=0.33  

[H2]0=0.53  

SOLUTION

First the equilibrium expression is written for this reaction:

Kc=[C2H6][C2H4][H2]=0.98(2)

ICE Table

The concentrations for the reactants are added to the "Initial" row of the table. The initial amount of  C2H6  is not mentioned, so it is given a value of 0. This amount will change over the course of the reaction.

ICE

C2H4  

H2  

C2H6  

Initial

0.33

0.53

0

Change

Equilibrium

ICE

C2H4  

H2  

C2H6  

Initial

0.33

0.53

0

Change

-x

-x

+x

Equilibrium

Equilibrium is determined by adding "Initial" and "Change together.

ICE

C2H4  

H2  

C2H6  

Initial

0.33

0.53

0

Change

-x

-x

+x

Equilibrium

0.33-x

0.53-x

x

The expressions in the "Equilibrium" row are substituted into the equilibrium constant expression to find calculate the value of x. The equilibrium expression is simplified into a quadratic expression as shown:

0.98=x(0.33−x)(0.53−x)(3)

0.98=xx2−0.86x+0.1749(4)

0.98(x2−0.86x+0.1749)=x(5)

0.98x2−0.8428x+0.171402=x(6)

0.98x2−1.8428x+0.171402=0(7)

The quadratic formula can be used as follows to solve for x:

x=−b±b2−4ac−−−−−−−√2a(8)

x=−0.1572±(−0.1572)2−4(0.98)(0.171402)−−−−−−−−−−−−−−−−−−−−−−−−−√2(0.98)(9)

x=1.78 or0.098(10)

Because there are two possible solutions, each must be checked to determine which is the real solution. They are plugged into the expression in the "Equilibrium" row for  [C2H4]Eq :

[C2H4]Eq=(0.33−1.78)=−1.45(11)

[C2H4]Eq=(0.33−0.098)=0.23(12)

If  x=1.78  then  [C2H4]Eq  is negative, which is impossible, therefore,  x  must equal 0.098.

So:

[C2H4]Eq=0.23M(13)

[H2]Eq=(0.53−0.0981)=0.43M(14)

[C2H6]Eq=0.098M(15)

Problems

1. Find the concentration of iodine in the following reaction if the equilibrium constant is 3.76 X 103, and 2 mol of iodine are initially placed in a 2 L flask at 100 K.

I2(g)⇌2I−(aq)(16)

2. What is the concentration of silver ions in 1.00 L of solution with 0.020 mol of AgCl and 0.020 mol of Cl- in the following reaction? The equilibrium constant is 1.8 x 10-10.

AgCl(s)⇌Ag+(aq)+Cl−(aq)(17)

3. What are the equilibrium concentrations of the products and reactants for the following equilibrium reaction?

Initial concentrations:   [HSO−4]0=0.4   [H3O+]0=0.01   [SO2−4]0=0.07   K=.012  

HSO−4(aq)+H2O(l)⇌H3O+(aq)+SO2−4(aq)(18)

4. The initial concentration of HCO3 is 0.16 M in the following reaction. What is the H+ concentration at equilibrium? Kc=0.20.

H2CO3⇌H+(aq)+CO2−3(aq)(19)

5.The initial concentration of PCl5 is 0.200 moles per liter and there are no products in the system when the reaction starts. If the equilibrium constant is 0.030, calculate all the concentrations at equilibrium.

Solutions

1.

I2  

I−  

Initial

2mol/2L = 1 M

0

Change

−x  

+2x  

Equilibrium

1−x  

2x  

At equilibrium

Kc=[I−]2[I2]  

3.76×103=(2x)21−x=4x21−x  

cross multiply

4x2+3.76.103x−3.76×103=0  

apply the quadratic formula:

−b±b2−4ac−−−−−−−√2a  

with:  a=4 ,  b=3.76×103   c=−3.76×103 .

The formula gives solutions of of x=0.999 and -940. The latter solution is unphysical (a negative concentration). Therefore, x=0.999 at equilibrium.

[I−]=2x=1.99M(20)

[I2]=1−x=1−.999=0.001M(21)

2.

Ag+  

Cl−  

Initial

0

0.02mol/1.00 L = 0.02 M

Change

+x  

+x  

Equilibrium  

0.02+x  

Kc=[Ag−][Cl−](22)

1.8×10−10=(x)(0.02+x)(23)

x2+0.02x−1.8×1010=0(24)

x=9×10−9(25)

[Ag−]=x=9×10−9(26)

[Cl−]=0.02+x=0.020(27)

3.

H2CO3  

SO2−4  

H3O+  

Initial

0.4

0.01

0.07

Change

−x  

Equilibrium

0.4−x  

0.01+x  

0.07+x  

Kc=[SO2−4][H3O+]H2CO3(28)

0.012=(0.01+x)(0.07+x)0.4−x(29)

cross multiply and get:

x2+0.2x−0.0041=0(30)

apply the quadratic formula

x = 0.0328

[H2CO3]=0.4-x=0.4-0.0328=0.3672

[S042-]=0.01+x=0.01+0.0328=0.0428

[H30]=0.07+x=0.07+0.0328=0.1028

4.

H2CO3

H+  

CO2−3  

Initial

.16

0

Change

-x

Equilibrium

.16-x

apply the quadratic equation

x=0.1049

[H+]=x=0.1049

5. First write out the balanced equation:

PCl5(g)⇌PCl3(g)+Cl2(g)  

PCl5  

PCl3  

Cl2  

Initial

0.2

0

Change

-x

Equilibrium

0.2-x

Kc=[PC3][Cl2][PCl5](31)

0.30=x20.2−x(32)

Cross multiply:

x2+0.03x−0.006=0(33)

Apply the quadratic formula:

x=0.064

[PCl5]=0.2-x=0.136

[PCl3]=0.064

[Cl2]=0.064

Information is verified by Brainly Incorporations.

Do not copy this information without the consent of Brainly Inc.

ipR.O.B.O.T is an international Internet Protocol Recessive Observation Branch Organization Technologies

4 0
3 years ago
Other questions:
  • 2. How much heat is released when 432g of water cools down from 710C to 180C?
    10·1 answer
  • Unlike acceleration and velocity, speed does NOT need to specify
    11·1 answer
  • Based on its position on the periodic table, Na is a __ at room temperature.
    5·2 answers
  • The periodic table is organized by
    10·1 answer
  • if a and b are directly proportional and the value of a becomes 1/4 as much ,what happens to the value of b
    10·1 answer
  • 5. If you evaluated 5 solvents as possible recystallization solvents do you think it is generally true that the solvent which ap
    10·1 answer
  • Describe how the metal probably increases the reaction rate, identify whether this is an example of homogeneous or heterogeneous
    5·1 answer
  • Convert 1.580 hectoliters to deciliters.<br><br> liters
    12·2 answers
  • 12.3 moles of sodium is what mass of Na?​
    15·1 answer
  • . Which of the following factors contributes to the increase in lonization energy from left to right across a period?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!