Answer:Answer: The step that is NOT necessary to complete before a cuvette is placed into the spectrophotometer is option B (Write, in ink, either sample or blank on the side of the cuvette to keep track of them)
Explanation: spectrophotometer is an instrument used to measure the light intensity absorbed after being passed through a solution. Before the absorbance of the sample solution, a solvent solution called blank is used for the calibration of the machine and this blank solvent is placed in a cuvette. The procedure usually comes first before the main sample is processed. Therefore there is no need to
Write, in ink, either sample or blank on the side of the cuvette to keep track of them. This is so since sample and blank is not absorbed at the same time by the machine.
Given that
Mass of water = 65.34 g
Amount of heat = mass of water * specific heat (temperature change
)
= 65.34 g * 4.184 J / g-C ( 21.75-18.43 )C
= 907.63 J
= 0.908 KJ
And
1 cal = 4.186798 J
907.63 J * 1 cal / 4.186798 J =216.78 cal
Or0.218 kcal
A) Deer
D) Grass
Hope that helps you out (:
When it comes to equilibrium reactions in chemistry, there are a lot of equilibrium constants that can be used. In the case of solubility, the appropriate one to use is the equilibrium constant of solubility product denotes as Ksp. This is the concentration of products raised to their coefficients. For example,
cC ⇔ aA + bB
Ksp = {[A^a][B^b]}
Now, for the this problem, the reaction is
BaSO₄ ⇔ Ba²⁺ + SO₄²⁻
The reaction is already balanced. Since we don't know the value of Ba²⁺ and SO₄²⁻, let's denote this at x.
1.1 × 10⁻¹⁰ = [x][x] =[x²]
[x] = [Ba²⁺] = [SO₄²⁻] = [BaSO₄] = 1.049 × 10⁻⁵ M