Answer: Lightning is mostly light and electricity, this light that is hitting is going at a rate of 299,792.458 km per second (or 186,282 miles per second) this is so much compared to sound which only travels at about 761 mph (or approximately 332 meters per second). Fun fact: The lightening you are seeing is that coming back to the cloud because the process happens so fast.
Explanation:
OK so yeah the mercury Venus Earth and Mars a rocky planets and Jupiter Saturn Uranus and Neptune our gaseous planets so I think that’s your answer correct me if I’m wrong:D
1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.
Answer:
A. potential energy is 258720 Joule
Explanation:
A.Gravitational potential energy is: PE = m × g × h
velocity = 15.33 m/s when the car reaches the bottom of the hill.
where, m = mass
g = acceleration due to gravity
h = height from the bottom of hill.
The potential energy is : m×g×h
=(2200×9.8×12)
=258720 Joule
B. at the bottom of the hill, the potential energy is converted into kinetic energy so PE at top = KE at bottom
kinetic energy=
(
)
where v = velocity
m= mass
therefore, v=
or, v=
or, v=15.33 m/s
Answer:
Of longitudinal waves
Explanation:
Depending on the direction of the oscillation, there are two types of waves:
- Transverse waves: in a transverse wave, the oscillations occur perpendicularly to the direction of propagation of the wave. Examples are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the oscillations occur parallel to the direction of propagation of the wave. In such a wave, the oscillations are produced by alternating regions of higher density of particles, called compressions, and regions of lower density of particles, called rarefactions. Examples of longitudinal waves are sound waves.