Respuesta:
340 N/cm²
Explicación:
Paso 1: Información provista
Peso de la estructura (F): 8500 Newton
Area superficial (A): 25 cm²
Paso 2: Calcular la presión (P) ejercida por la estructura de concreto sobre su base
La presión es igual al cociente entre la fuerza ejercida y la superficie sobre la que se aplica.
P = F/A
P = 8500 N / 25 cm² = 340 N/cm²
I believe that the choices for this question are:
C2H4O2, C4H8O4 CH2O, C6H12O6 C3H6O3, C6H12O6 C2H4O2, C6H12O6
The answer to this based on the molar masses given is:
C2H4O2, C6H12O6
To prove calculate the molar mass:
C2H4O2 = 2*12 + 4*1 + 2*16 = 60
C6H12O6 = 6*12 + 12*1 + 6*16 = 180
Explanation:
Atomic number of magnesium is 12 and its electronic distribution is 2, 8, 2. On the other hand, atomic number of iodine is 53 and its electronic configuration is
.
Hence, there are 7 valence electrons in an iodine atom and there are 2 valence electrons in a magnesium atom.
So, one atom of iodine requires one electron from a donor atom to complete its octet. But one magnesium atom contains two valence electrons.
Therefore, one magnesium atom will combine with two iodine atoms to result in the formation of magnesium iodide as follows.

Therefore, an ionic bond will be formed when magnesium reacts with iodine to make magnesium iodide.
Answer:
92.49 %
Explanation:
We first calculate the number of moles n of AgBr in 0.7127 g
n = m/M where M = molar mass of AgBr = 187.77 g/mol and m = mass of AgBr formed = 0.7127 g
n = m/M = 0.7127g/187.77 g/mol = 0.0038 mol
Since 1 mol of Bromide ion Br⁻ forms 1 mol AgBr, number of moles of Br⁻ formed = 0.0038 mol and
From n = m/M
m = nM . Where m = mass of Bromide ion precipitate and M = Molar mass of Bromine = 79.904 g/mol
m = 0.0038 mol × 79.904 g/mol = 0.3036 g
% Br in compound = m₁/m₂ × 100%
m₁ = mass of Br in compound = m = 0.3036 g (Since the same amount of Br in the compound is the same amount in the precipitate.)
m₂ = mass of compound = 0.3283 g
% Br in compound = m₁/m₂ × 100% = 0.3036/0.3283 × 100% = 0.9249 × 100% = 92.49 %
<h2>Answer : Option D) Solutions of salt and water conduct electricity.
</h2><h3>Explanation :</h3>
The best description of salt is that when they are dissolved in water they dissociate into ions and become electrolytic in nature. This is observed that these solutions of salt will conduct electricity. Dissociation of ions helps the solution to conduct electricity. Usually salts dissociate into respective cations and anions of the salt compound. Most of the salts can be obtained as a product from neutralization reactions.