The outermost energy shell of an atom
because they are involved in forming bonds
One mole of hydrogen peroxide contains 6.02 x 10^23 molecules of hydrogen peroxide. And each molecule contains 4 atoms, so the answer is 4 x 6.02 x 10^23.
Answer:
ΔG°rxn = -69.0 kJ
Explanation:
Let's consider the following thermochemical equation.
N₂O(g) + NO₂(g) → 3 NO(g) ΔG°rxn = -23.0 kJ
Since ΔG°rxn < 0, this reaction is exergonic, that is, 23.0 kJ of energy are released. The Gibbs free energy is an extensive property, meaning that it depends on the amount of matter. Then, if we multiply the amount of matter by 3 (by multiplying the stoichiometric coefficients by 3), the ΔG°rxn will also be tripled.
3 N₂O(g) + 3 NO₂(g) → 9 NO(g) ΔG°rxn = -69.0 kJ
The answer is protons. Neutrons have no charge and electrons have a negative charge so the positive charge must be protons.
Answer:

Explanation:
First, we need to find the molecular mass of water (H₂O).
H₂O has:
- 2 Hydrogen atoms (subscript of 2)
- 1 Oxygen atom (implied subscript of 1)
Use the Periodic Table to find the mass of hydrogen and oxygen. Then, multiply by the number of atoms of the element.
- Hydrogen: 1.0079 g/mol
- Oxygen: 15.9994 g/mol
There are 2 hydrogen atoms, so multiply the mass by 2.
- 2 Hydrogen: (1.0079 g/mol)(2)= 2.0158 g/mol
Now, find the mass of H₂O. Add the mass of 2 hydrogen atoms and 1 oxygen atom.
- 2.0158 g/mol + 15.9994 g/mol = 18.0152 g/mol
Next, find the amount of moles using the molecular mass we just calculated. Set up a ratio.

Multiply. The grams of H₂O will cancel out.



The original measurement given had two significant figures (3,2). We must round to have 2 significant figures. All the zeroes before the 1 are not significant. So, round to the ten thousandth.
The 7 in the hundred thousandth place tells us to round up.

There are about <u>0.0018 moles in 0.032 grams.</u>