Well, since you only want direction, ignore the numbers. Use the right hand rule.
Current (pointer finger) points west (left).
Magnetic field (middle finger) points south (towards you).
Force (thumb) then points up (away from the earth)
Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons
Answer:
value of heat is 18 J
2. step by step
formular w=p(volume1-volume2)
w= 1.0×10^5(0.0006-0.0004)
w= 40 J
Answer:
(a) 
(b) 15 hours
Explanation:
half life, T = 12 hours
No = 19 g
(a) Let N be the amount remaining after time t.
Let λ be the decay constant.

The equation of radioactivity used here is given by


(b) N = 8 gram
Substitute the values in above equation

λ = 0.0577 per hour
So, 

Take natural log on both the sides
- 0.0577 t = - 0.865
t = 15 hours
Answer:
200 N
Explanation:
Given that,
A ball traveling at 15 m/s hits a bat with a force of 200 N.
We need to find the force that the bat moving at 20 m/s hit the ball with.
We know that, this probelm is based on Newton's third law of motion. The force that the ball exerting on bat should be equal to the force that the bat exerting in the ball but in opposite direction.
It would mean that the ball hits the ball with a force of 200 N. Hence, the correct option is (a).