Answer:
They are the same element.
Explanation:
Atom >>>>> Proton >>>> Neutron
A >>>>>>>> 8 >>>>>>>>> 10
B >>>>>>>> 8 >>>>>>>>> 12
From the table above we can see that both atoms have the same proton number.
Therefore, they are the same element because they have the same proton number which means that they have the same atomic number. The element in this case is existing as an isotope in that the atoms have the same proton number but different neutron number.
Answer:
6.26 m/s
Explanation:
Pretty slow.... the PE (Potential Energy) at 2m will be converted to KE (Kinetic Energy) at the bottom of the track (neglecting friction)
PE = KE
mgh = 1/2 mv^2 divide both sides of the equation by 'm'
gh = 1/2 v^2 multiply both sides by 2
2 gh = v^2 take sqrt of both sides
v = sqrt ( 2gh) = sqrt ( 2*9.81*2) = 6.26 m/s
Answer:
1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Explanation:
According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.
As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :
Q₁ = ∫ ρ dV
Here dV is the volume element of sphere of radius r.
Q₁ = ρ x 4π x ∫ r² dr
The limit of integration is from 0 to r as r is less than R.
Q₁ = (4π x ρ x r³ )/3
But volume charge density, ρ = 
So, 
Applying Gauss law of electrostatics ;
∫ E ds = Q₁/ε₀
Here E is electric field inside the sphere and ds is surface element of sphere of radius r.
Substitute the value of Q₁ in the above equation. Hence,
E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Density is the mass per unit volume of any object. It is calculated by dividing the mass of an object by its volume. This is:
ρ = m/V
ρ = 4.05 g / 12 mL
ρ = 0.3375 g/mL
<h3>
ρ ≅ 0.338 g/mL</h3>
OPTION A