Answer:
Moment of the force is 20 N-m.
Explanation:
Given:
Force exerted by the person is, 
Distance of application of force from the point about which moment is needed is, 
Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.
Therefore, the moment of the force about the end of the claw hammer is given as:

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.
lf a heavy point mass is suspended by a weightless, inextensible and perfectly flexible string from a rigid support, then this arrangement is called simple pendulum.
In practice, however, these requirements cannot be fulfilled. So we use a practical pendulum.
A practical pendulum consists of a small metallic solid sphere suspended by a fine silk thread from a rigid support. This is the practical simple pendulum which is nearest to the ideal simple pendulum.
Note :
The metallic sphere is called the bob.
When the bob is displaced slightly to one side from its mean position and released, it oscillates about its mean position in a vertical plane.
The power of the lamp would be calculated with the equation of ohm laws. P = U x I = 122V x 0.1A = 12.2W
Answer:
Seismic waves cause Earthquakes by shaking the ground aggressively and dangerously. These waves are usually calculated on a seismograph to calculate how hard the earthquake hit that area. A transform Boundary creates the tension when the tectonic plates gets stuck. It stays stuck for a long period of time. Then, at one point, the tectonic plates become unstuck which releases the tension into waves which are called seismic waves. Hope I answered you question.
Frictional force and Applied force has same “magnitude” and “opposite” direction.
Option: B
<u>Explanation</u>:
When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.
When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.
Formula for "frictional force" is 
Where,
is coefficient of friction and N is normal force.