Answer:
The resistivity of the material used to make the rod is ρ= 7.5 * 10⁻⁷ Ω.m
Explanation:
R= 0.2 Ω
L= 0.8 m
S= 1.5mm*2mm= 3 mm² = 3 * 10⁻⁶ m²
ρ = (R*S)/L
ρ= 7.5 * 10⁻⁷ Ω.m
Answer:

Explanation:
Given data:
mass of block is 
radius of block = 0.061 m
moment of inertia is 
D is distance covered by block = 0.65 m
speed of block is 1.705 m/s
From conservation of momentum we have

![0.84 \times 9.81 \times 0.65 = \frac{1}{2}\times 0.84 \times 1.705^2 +\frac{1}{2} \times 6.2 \times 10^{-3} [\frac{1.705}{0.061}]^2 + E_l](https://tex.z-dn.net/?f=0.84%20%5Ctimes%209.81%20%5Ctimes%200.65%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%200.84%20%5Ctimes%201.705%5E2%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%206.2%20%5Ctimes%2010%5E%7B-3%7D%20%5B%5Cfrac%7B1.705%7D%7B0.061%7D%5D%5E2%20%2B%20E_l)
solving for energy loss

There is no illustration of the problem provided but I'll attempt to provide an answer.
The relationship between the electric potential difference between two points and the average strength of the electric field between those two points is given by:
║E║ = ΔV/d
║E║ is the magnitude of the average electric field, ΔV is the potential difference between A and B, and d is the distance between A and B.
We are given the following values:
║E║= 10N/C
d = 3m
Plug these values in and solve for ΔV
10 = ΔV/3
ΔV = 30V
The product of (frequency) times (wavelength) is always
the same number (the speed of the wave).
So if the frequency is doubled, the wavelength has to drop to
half of what it was, in order to keep their product constant.
Answer:
23: Acceleration 24:1m/s^2
Explanation:
